Montenegro U19 Football Team: A Comprehensive Guide for Sports Bettors
Overview of Montenegro U19
The Montenegro U19 football team represents the under-19 national team of Montenegro. Competing in youth European tournaments, the team showcases emerging talent from a region known for its passionate football culture. The squad is currently coached by [Coach Name], who has been instrumental in developing young talents.
Team History and Achievements
The Montenegro U19 team was founded in [Year Founded] and has since made notable strides in youth football. While they have yet to secure major titles, their performances in the UEFA European Under-19 Championship have been commendable, with several players breaking into senior teams. Notable seasons include [Year], where they finished [Position].
Current Squad and Key Players
The current squad boasts a mix of promising talents. Key players include:
- [Player Name] – Midfielder, known for his tactical intelligence and playmaking abilities.
- [Player Name] – Forward, renowned for his goal-scoring prowess and agility.
- [Player Name] – Defender, celebrated for his defensive solidity and leadership on the field.
Team Playing Style and Tactics
The Montenegro U19 team typically employs a [Formation] formation, focusing on a balanced approach between attack and defense. Their strategy emphasizes quick transitions and exploiting spaces left by opponents. Strengths include disciplined defense and creative midfield play, while weaknesses may lie in maintaining consistency under pressure.
Interesting Facts and Unique Traits
The team is affectionately nicknamed “[Nickname]” by fans, reflecting their spirited play style. They have a dedicated fanbase that supports them fervently across Europe. Rivalries with teams like [Rival Team] add an extra layer of excitement to their matches.
Lists & Rankings of Players, Stats, or Performance Metrics
Here are some key performance metrics:
- [Player Name]: Goals scored this season – ✅[Number]
- [Player Name]: Assists – 🎰[Number]
- [Player Name]: Clean sheets as goalkeeper – 💡[Number]
Comparisons with Other Teams in the League or Division
In comparison to other teams in their division, Montenegro U19 stands out due to their strategic flexibility and youthful exuberance. While some teams may have more experience, Montenegro’s ability to adapt quickly is a significant advantage.
Case Studies or Notable Matches
A breakthrough game for the team was against [Opponent Team] in [Year], where they secured a historic victory with a scoreline of [Score]. This match highlighted their potential to compete at higher levels.
Tables Summarizing Team Stats, Recent Form, Head-to-Head Records, or Odds
| Statistic | Montenegro U19 | Average League Statistic |
|---|---|---|
| Average Goals per Match | [Number] | [Number] |
| Last Five Matches Result (W/D/L) | [Result Sequence] | N/A |
Tips & Recommendations for Analyzing the Team or Betting Insights
To effectively analyze Montenegro U19 for betting purposes:
- Analyze recent form trends to gauge momentum.
- Consider player injuries and suspensions that could impact performance.
- Evaluate head-to-head records against upcoming opponents.
Frequently Asked Questions (FAQ)
What are the key strengths of the Montenegro U19 team?
Their key strengths lie in disciplined defense and creative midfield play, which allow them to control games effectively.
Who are the standout players to watch?</h3
Pivotal players include [Player Names], who consistently deliver high performances both defensively and offensively.
How do they fare against top teams?</h3
Montenegro U19 often performs admirably against top teams due to their tactical discipline and ability to exploit weaknesses in stronger opponents.
Comebacks by the coach have improved their performance?</h3
Certainly! Coach [Name]’s strategies have revitalized the team’s dynamics, leading to more cohesive gameplay.
Quotes or Expert Opinions about the Team</h2
“The potential within this squad is immense,” says former coach [Name]. “With continued development, they can be formidable contenders.”</blockquote
Pros & Cons of the Team’s Current Form or Performance</h2
- ✅ Strong defensive record over recent matches.</li
- ❌ Inconsistency in converting chances into goals remains an issue.</li
- ✅ Young players showing great promise under pressure situations.</lzhangyuxuan521/zhongtai/zhongtai/src/main/java/com/smart/framework/web/MyExceptionHandler.java
package com.smart.framework.web;
import com.smart.framework.exception.BaseException;
import com.smart.framework.model.JsonResult;
import lombok.extern.slf4j.Slf4j;
import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.ExceptionHandler;
import org.springframework.web.bind.annotation.ResponseBody;
/**
* @author [email protected]
* @date Created on 2019/10/23.
*/
@Slf4j
@ControllerAdvice(basePackages = {“com.smart”})
public class MyExceptionHandler {
@ExceptionHandler(value = BaseException.class)
@ResponseBody
public JsonResult
}
# zhongtai
## 简介
中台系统,基于Spring Boot开发。
## 模块说明
### framework
公共模块,包含一些工具类、常量、异常类等。
### common-service
通用服务,提供一些通用的功能,如日志记录、缓存管理等。
### account-service
账号管理服务,提供账号的增删改查及其他相关功能。
### permission-service
权限管理服务,提供菜单、角色、用户的增删改查及其他相关功能。
## 使用方式
### 构建项目环境
本项目使用了以下依赖:
* JDK:JDK8以上版本(推荐JDK11)
* Maven:Maven3.x以上版本(推荐Maven3.6.x)
在构建项目前,请确保已经安装好上述依赖,并配置好环境变量。然后可以通过下面两种方式构建项目:
#### 方式一:直接导入IDEA进行构建(推荐)
直接导入`zhongtai`模块即可。导入完成后,在IDEA中运行`com.smart.Application`启动类即可启动整个项目。启动成功后,访问`http://localhost:8080/swagger-ui.html`即可查看所有接口文档。
#### 方式二:通过命令行构建(不推荐)
进入到根目录下执行以下命令:
shell script
mvn clean package -Dmaven.test.skip=true -Pprod
构建成功后,在根目录下会生成一个`zhongtai.zip`压缩包。解压该压缩包并进入解压出来的文件夹中,执行以下命令启动整个项目:
shell script
java -jar zhongtai.jar –spring.profiles.active=prod
启动成功后,访问`http://localhost:8080/swagger-ui.html`即可查看所有接口文档。
zhangyuxuan521/zhongtai null ? Math.round(element.value * multiplier).toFixed(0).replace(/(d)(?=(d{3})+(?!d))/g,
‘$1,’)
: ”,
xPosition,
yPosition);
}
});
});
ctx.restore();
}
};
return chartjsPluginDataLabels;
};zhangyuxuan521/zhongtai<|file_sep # zhongtai
## 简介
中台系统,基于Spring Boot开发。
## 模块说明
### framework
公共模块,包含一些工具类、常量、异常类等。
### common-service
通用服务,提供一些通用的功能,如日志记录、缓存管理等。
### account-service
账号管理服务,提供账号的增删改查及其他相关功能。
### permission-service
权限管理服务,提供菜单、角色、用户的增删改查及其他相关功能。
## 使用方式
### 构建项目环境
本项目使用了以下依赖:
* JDK:JDK8以上版本(推荐JDK11)
* Maven:Maven3.x以上版本(推荐Maven3.6.x)
在构建项目前,请确保已经安装好上述依赖,并配置好环境变量。然后可以通过下面两种方式构建项目:
#### 方式一:直接导入IDEA进行构建(推荐)
直接导入`zhongtai`模块即可。导入完成后,在IDEA中运行`com.smart.Application`启动类即可启动整个项目。启动成功后,访问`http://localhost:8080/swagger-ui.html`即可查看所有接口文档。
#### 方式二:通过命令行构建(不推荐)
进入到根目录下执行以下命令:
shell script
mvn clean package -Dmaven.test.skip=true -Pprod
构建成功后,在根目录下会生成一个`zhongtai.zip`压缩包。解压该压缩包并进入解压出来的文件夹中,执行以下命令启动整个项目:
shell script
java -jar zhongtai.jar –spring.profiles.active=prod
启动成功后,访问 `http://localhost:8080/swagger-ui.html `即可查看所有接口文档。
zhangyuxuan521/zhongtai<|file_sep1 # zhongtai
## 简介
中台系统,基于Spring Boot开发。
## 模块说明
### framework
公共模块,包含一些工具类、常量、异常类等。
### common-service
通用服务,提供一些通用的功能,如日志记录、缓存管理等。
### account-service
账号管理服务,提供账号的增删改查及其他相关功能。
### permission-service
权限管理服务,提供菜单、角色、用户的增删改查及其他相关功能。
## 使用方式
### 构建项目环境
本项目使用了以下依赖:
* JDK:JDK8以上版本(推荐JDK11)
* Maven:Maven3.x以上版本(推荐Maven3.6.x)
在构建项目前,请确保已经安装好上述依赖,并配置好环境变量。然后可以通过下面两种方式构建项目:
#### 方式一:直接导入IDEA进行构建(推荐)
直接导入 `zhongtai `模块即可 。 导入完成后,在IDEA中运行 `com.smart.Application ` 启动类即可启动整个项目 。 启动成功后 ,访问 `http://localhost:8080/swagger-ui.html ` 即可查看所有接口文档 。
#### 方式二:通过命令行构建 (不推荐)
进入到根目录下执行以下命令 :
shell script
mvn clean package -Dmaven.test.skip=true -Pprod
构建成功后 ,在根目录下会生成一个 `zhongtai.zip ` 压缩包 。 解压该压缩包并进入解压出来的文件夹中 ,执行以下命令启动整个项目 :
shell script
java -jar zhongtai.jar –spring.profiles.active=prod
启动成功后 ,访问 ` http://localhost:8080/swagger-ui.html ` 即可查看所有接口文档。zhangyuxuan521/zhongtai<|file_sep详细内容见《架子图.md》。
shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts.<|file_sep|||||||||||||||||||||||||
|-|-|-|-|-|-|-|-|-|-|
|[Codeforces Round #525 Divisor](https://codeforces.com/group/ywZCQ7VXrH/contest/259893/problemset)|Medium|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20Codeforces%20Round%20525%20Divisor.cpp)|O(nloglogn)||
|[Codeforces Round #525 LCM](https://codeforces.com/group/ywZCQ7VXrH/contest/259893/problemset)|Hard|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20Codeforces%20Round%20525%20LCM.cpp)|O(nloglogn)||
|[Codeforces Round #525 Counting Subarrays](https://codeforces.com/group/ywZCQ7VXrH/contest/259893/problemset)|Hard|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20Codeforces%20Round%20525%20Counting%20Subarrays.cpp)|O(n^1.5)||
||||
|-|-|-|
|[Hackerearth Array Queries](https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/practice-problems/beginner/array-query-hackerearth-cf-divisibility-bef5a5f9/?track=practice-problems&jobbie-interview-preparation-kit-datastructures-hashmaps)|Easy|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20HackerearthArrayQueries.cpp)||
||||
|-|-|-|
|[Hackerearth Array Queries using Binary Indexed Tree](https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/practice-problems/beginner/array-query-hackerearth-cf-divisibility-bef5a5f9/?track=practice-problems&jobbie-interview-preparation-kit-datastructures-hashmaps)|Medium|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution_of_HackerearthArrayQueries_using_Binary_Indexed_Tree.cpp)||
||||
|-|-|-|
|[Hackerearth Array Queries using Segment Tree](https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/practice-problems/beginner/array-query-hackerearth-cf-divisibility-bef5a5f9/?track=practice-problems&jobbie-interview-preparation-kit-datastructures-hashmaps)|Hard|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution_of_HackerearthArrayQueries_using_Segment_Tree.cpp)||
||||
|-|-|-|
|[Codility Lesson EquiLeader ](https://app.codility.com/demo/results/trainingGPGQCZ-BK6/) |Medium |[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_EquiLeader.cpp)||
||||
|–|–|–|
|[Codility Lesson PassingCars ]( https://app.codility.com/demo/results/trainingNKRURS-JDU/) | Medium |[Solution]( https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of–Programming-Problems-in—CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_PassingCars.cpp ) ||
||||
|–|–|–|
|[Codility Lesson FrogRiverOne ]( https://app.codility.com/demo/results/trainingNBVADY-WKU/) | Easy |[Solution]( https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of–Programming-Problems-in—CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_FrogRiverOne.cpp ) ||
||||
|–|–|–|
|[Codility Lesson MaxCounters ]( https://app.codility.com/demo/results/trainingTWWB7N-YDA/) | Medium |[Solution]( https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of–Programming-Problems-in—CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_MaxCounters.cpp ) ||
||||
|–|–|–|
|[Codility Lesson MinAvgTwoSlice ]( https://app.codility.com/demo/results/training7EKYZF-X68/) | Medium |[Solution]() ||
<>};
const std::vector& GetIndices(const std::vector<std::vector>& indices,
int64_t axis_size,
int64_t batch_size,
bool reverse_mapping);
# Solution
## Background
This code snippet seems intended for managing tensor operations within machine learning frameworks like TensorFlow or PyTorch. Specifically, it deals with calculating indices necessary for gathering data from tensors based on certain criteria specified by an “axis” parameter among others.
The first part defines a function pointer type named `_gather_indices_fn`, which suggests it points to functions responsible for generating indices used during tensor gathering operations.
The second part describes another function signature named `GetIndices`. This function accepts multiple parameters including nested vectors of integers (`indices`) representing indices across different dimensions of a tensor; an integer (`axis_size`) likely indicating the size along which gathering will occur; another integer (`batch_size`) possibly representing how many such gather operations are batched together; finally, a boolean (`reverse_mapping`) which might indicate whether some form of reverse mapping should be applied when generating these indices.
In typical execution:
1. The caller would provide specific indices where data needs to be gathered from within larger tensors.
2. Depending on whether reverse mapping is required or not along with other parameters like axis size or batch size adjustments might be made.
3. The `_gather_indices_fn`, through its implementation pointed by functions matching its signature would generate appropriate index mappings.
4. These mappings then facilitate efficient data retrieval/gathering from tensors as per user specifications.
## Reasoning
Given that `_gather_indices_fn` is defined as a pointer type meant specifically for index generation functions used during tensor gathering operations:
1. It must point to functions that accept parameters related directly to indexing within tensors—this includes things like specific indices needed from tensors (`indices`) as well as configurations regarding how these indices should be interpreted (`axis_size`, etc.).
Considering typical use cases such as slicing tensors along certain dimensions or batching multiple such operations together efficiently:
The missing part should describe what parameters these functions take—namely information about what parts of tensors are being targeted (via indices), how large those parts are (via axis size), how many such operations might be batched together (batch size), plus any additional configurations like reversing mappings if required.
Therefore:
The missing part likely specifies these inputs directly correlating them with what is later detailed explicitly in another function signature (`GetIndices`). This correlation suggests that whatever `_gather_indices_fn` points towards essentially requires similar input parameters.
## Final Guess
Given all above considerations:
The best guess for what fits into <> would be:
`(const std::vector<std::vector>& indices,
int64_t axis_size,
int64_t batch_size,
bool reverse_mapping)`.
This aligns perfectly with both logical expectations based on naming conventions used throughout C++ standard library types mentioned (`std::vector`, `int64_t`) as well as functional requirements inferred from usage context within tensor manipulation tasks.
***********
{“comparison_to_correct_answer”: “The student’s answer matches exactly with the correct answer provided. Both answers specify the same parameter list `(const std::vector<std::vector>& indices,n int64_t axis_size,n int64_t batch_size,n bool reverse_mapping)` without any deviation.”, “correctness_discussion”: “The student was completely accurate in guessing what fits into <> based on logical expectations derived from naming conventions used throughout C++ standard library types mentioned (`std::vector`, `int64_t`) as well as functional requirements inferred from usage context within tensor manipulation tasks.”, “grade”: 5, “missing_context”: “N”, “missing_context_text”: “OK”, “hint”: “OK”}<>: Hi there! I’m working on implementing Dijkstra’s algorithm using this code snippet:
python
def dijkstra(self):
# create vertex set Q
Q*.create_vertex_set()
self.initialise_distance_table(Q)
while not Q.is_empty():
# u <- vertex in Q with min distance in dist[]
u*.extract_min_from_queue(Q)
if self.dist[u] == infinity:
break
#for each vertex v adjacent to u
for v*.in_adj_list(u):
#alt <- dist[u] + length(u,v)
alt*.calculate_alt_distance(u,v)
#if alt less than dist[v]
if alt*.compare_dist(v):
#dist[v] <- alt
self.update_distance_node(v,alt,Q)
#previous[v] <- u
self.update_previous_dict(v,u)
#update vertex v in Q
Q*.update_vertex(v)
I'm trying to understand how each placeholder method works within this algorithm structure but I'm feeling quite confused about how these pieces fit together practically.
Could you help clarify what each placeholder method should do? For instance:
1. What exactly does `.create_vertex_set()` need to achieve?
2. How should `.extract_min_from_queue(Q)` operate?
Any guidance would be greatly appreciated!
<>: python
Sure! Let’s break down each placeholder method:
1. **`.create_vertex_set()`**: This method should initialize your priority queue (or set) containing all vertices of your graph that need processing initially. Each vertex can start with an initial distance value—typically infinity except for the starting node which gets set to zero.
2. **`.extract_min_from_queue(Q)`**: This operation extracts (removes) the vertex with the smallest tentative distance from your priority queue (Q). This ensures that you’re always processing nodes in order of increasing distance from the source node.
For practical implementation:
– You can use Python’s `heapq` module for efficient priority queue operations.
Feel free to ask if you need further clarification! 😊
<>: Thanks for that! Now I’m thinking about optimizing how distances are updated when extracting vertices from the queue. Instead of updating distances every time we extract a vertex, could we use lazy updates? Also, I’ve read about Fibonacci heaps being more efficient than binary heaps for decrease-key operations—how could I integrate that into my implementation?
<>: Sure! Here’s how you can approach these optimizations:
1. **Lazy Updates**: With lazy updates, instead of immediately updating all adjacent vertices’ distances when extracting a vertex (u), you mark (u) as processed only after extracting it from (Q). When you extract (u), check if it’s marked processed; if so, skip further processing since its shortest path is already finalized.
To implement lazy updates:
– Use an additional set or dictionary to track processed vertices.
– Only update distances when extracting unprocessed vertices.
2. **Fibonacci Heaps**: Fibonacci heaps offer better theoretical efficiency for decrease-key operations compared to binary heaps due to their amortized time complexity advantages.
To integrate Fibonacci heaps:
– You’ll need a library like `fibonacci_heap_mod`, which provides Fibonacci heap functionality.
– Replace your current priority queue implementation with one using this library.
– Ensure methods like insertions and decrease-key operations align with Fibonacci heap APIs.
These changes can make your Dijkstra’s algorithm more efficient under certain conditions!
<>: Great suggestions! Here’s what I’m thinking:
1. For lazy updates, I’ll add a dictionary called `processed_vertices` to track which vertices have been finalized.
python
processed_vertices = {}
# During extraction:
if u not in processed_vertices:
processed_vertices[u] = True
# Proceed with distance updates only if not processed
else:
continue
Does this look right?
Also, regarding Fibonacci heaps—I’ll try integrating them using `fibonacci_heap_mod`. How do I handle decrease-key operations differently compared to binary heaps? Any specific API calls I should focus on?
<>: Your approach looks good! Here’s how you can refine it further:
1. **Lazy Updates**:
Your logic correctly uses a dictionary called `processed_vertices`. Ensure you initialize it at the start and update it whenever you finalize processing a vertex.
python
processed_vertices = {}
while not Q.is_empty():
u = Q.extract_min()
if u not in processed_vertices:
processed_vertices[u] = True
# Proceed with distance updates only if not processed
…
else:
continue
2. **Fibonacci Heaps**:
When using `fibonacci_heap_mod`, focus on these key API calls:
– **Insertion**: Use `insert(key_value)` instead of adding elements directly.
– **Extract Min**: Use `extract_min()` similar to binary heaps but ensure compatibility with Fibonacci heap structure.
– **Decrease-Key**: Use `decrease_key(node_handle)` instead of directly updating values; this maintains heap properties efficiently.
Here’s a basic integration example:
python
from fibonacci_heap_mod import fibonacci_heap_faster as FHF
Q = FHF.FibonacciHeap()
# Insert nodes into heap initially…
for node in graph.nodes():
Q.insert((initial_distance[node], node))
# During processing…
while not Q.is_empty():
_, u = Q.extract_min()
if u not in processed_vertices:
processed_vertices[u] = True
# Calculate alternative distances…
alt_dist_v_for_all_adjacent_nodes()
# Decrease-key operation…
node_handle_v_in_Q.decrease_key(new_alt_dist_v)
Ensure your graph structure supports node handles compatible with Fibonacci heap operations!
<>: Awesome! So just to confirm—if I want my graph nodes compatible with Fibonacci heap operations using handles—is there anything specific I need beyond assigning each node an initial distance when inserting? Do I need additional attributes or methods on my nodes?
<>: To ensure compatibility with Fibonacci heap operations using handles:
1. **Node Handles**: Each node needs an associated handle when inserted into the heap because Fibonacci heaps manage elements via these handles rather than direct references.
2. **Attributes**: Besides assigning initial distances during insertion, ensure each node has attributes accessible via its handle:
python
class NodeHandleWrapper:
def __init__(self, node):
self.node_id_or_reference = node.id_or_reference() # Unique identifier/reference
def get_node(self):
return self.node_id_or_reference
def update_distance(self):
pass # Implement logic if needed elsewhere outside heap context
def __lt__(self, other):
return self.distance() < other.distance()
def __eq__(self, other):
return self.distance() == other.distance()
def __hash__(self):
return hash(self.node_id_or_reference)
def __repr__(self):
return f"NodeHandleWrapper({self.node_id_or_reference})"
def distance(self):
return self.current_distance_value_in_graph_structure()
def decrease_key(self,new_distance):
self.current_distance_value_in_graph_structure() == new_distance
def increase_key(self,new_distance):
self.current_distance_value_in_graph_structure() == new_distance
def delete(self):
remove_node_from_graph_structure()
delete_this_handle_from_heap()
def consolidate_cut(self,cut_node):
perform_consolidation_logic_here()
update_cut_node_with_new_parent_if_needed()
return cut_node.parent
def consolidate_link(self,node_a,node_b):
perform_consolidation_logic_here()
link_nodes_together(node_a,node_b)
return parent_of_linked_nodes
def find_minimum_child(self,node_a,node_b):
find_the_minimum_child_between(node_a,node_b)
return minimum_child
def child_of_root_list_is_marked_(self,node_a,node_b):
determine_if_child_is_marked(node_a,node_b)
return boolean_result
def cut_root_list_by_one_level_(self,cut_node,parent_of_cut_node,new_parent_of_cut_node,cut_children_list_length_before_cutting,parent_was_marked_before_cutting,cut_children_list_length_after_cutting):
perform_cut_logic_here()
Ensure your graph structure supports accessing nodes via identifiers/references compatible with these methods!
<>: Perfect! So just confirming—if my nodes already have unique identifiers or references assigned when creating them—is that enough? Do I need any additional attributes specifically tied to handle compatibility beyond what’s already there?
<>: Yes, having unique identifiers or references assigned when creating your nodes is generally sufficient for compatibility with Fibonacci heap handles.
Here’s what you need:
1. **Unique Identifier**: Ensure each node has a unique identifier/reference used consistently across your graph structure.
2. **Distance Access**: Implement methods like `distance()` within your node class or wrapper class so that handles can access current distances efficiently.
If these are covered by your existing setup:
python
class NodeHandleWrapper:
def __init__(self, node):
self.node_id_or_reference = node.id_or_reference() # Unique identifier/reference
def get_node(self):
return self.node_id_or_reference
def distance(self):
return self.current_distance_value_in_graph_structure()
# Ensure other necessary methods (__lt__, __eq__, etc.) are implemented similarly.
No additional attributes beyond those needed for managing distances are required unless specific logic demands it elsewhere outside heap interactions!
<>: Got it! Everything seems clear now—I’ll go ahead and implement these changes thanks!
<>: You’re welcome! It sounds like you’re all set to implement those changes smoothly 🚀 If you run into any issues or have more questions along the way feel free reach out Happy coding! 😊<>: Hi there,
I’m working on implementing advanced custom loss calculations involving dual softmax cross entropy losses combined through KL divergence regularization terms between two logits sets generated by different model heads outputs (head_i_output vs head_j_output). The idea is inspired by knowledge distillation techniques where we try different regularization terms between logits sets generated by different models’ heads outputs through KL divergence loss term added onto standard cross entropy loss terms calculated separately between ground truth labels vs individual head outputs logits sets respectively before combining them through addition operation upon separate CE losses calculated earlier individually w.r.t respective model head output logits sets w.r.t ground truth labels respectively before adding KL divergence loss term calculated between both model head output logits sets w.r.t each other previously discussed above…
However something seems off because my code isn’t working as expected!
Here’s my buggy version:
python
def compute_loss(logits_i,
logits_j,
label,
alpha):
bce_loss_i=nn.CrossEntropyLoss()(logits=logits_i,
label=label)
bce_loss_j=nn.CrossEntropyLoss()(logits=logits_j,label=label)
kl_loss_ij=F.kl_divergence(logits_i=logits_i,
logits_j=logits_j)
total_loss=bce_loss_i+bce_loss_j+alpha*kl_loss_ij
return total_loss
I keep getting unexpected results when running tests… Can anyone help me figure out what might be going wrong here?
Thanks!
Traceback (most recent call last):
File “”, line XX
loss=compute_loss(logits_head_i,
logits_head_j,
targets_batch,
alpha)
File “”, line XX
total_loss=bce_loss_i+bce_loss_j+alpha*kl_divergence(logits=logits_i,
logits=logits_j)
ValueError Traceback (most recent call last):
File “/usr/local/lib/python3.X/dist-packages/torch/functorial.py”, line XX
return torch.div(f.log(), g)+math.log(b)-torch.div(g.log(), b)
ValueError : unsupported operand type(s) fro torch.div(): ‘float’ mulitple[‘Tensor’]
Any insights would be greatly appreciated!
Thanks!
<>
“The potential within this squad is immense,” says former coach [Name]. “With continued development, they can be formidable contenders.”</blockquote
Pros & Cons of the Team’s Current Form or Performance</h2
- ✅ Strong defensive record over recent matches.</li
- ❌ Inconsistency in converting chances into goals remains an issue.</li
- ✅ Young players showing great promise under pressure situations.</lzhangyuxuan521/zhongtai/zhongtai/src/main/java/com/smart/framework/web/MyExceptionHandler.java
package com.smart.framework.web;
import com.smart.framework.exception.BaseException;
import com.smart.framework.model.JsonResult;
import lombok.extern.slf4j.Slf4j;
import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.ExceptionHandler;
import org.springframework.web.bind.annotation.ResponseBody;
/**
* @author [email protected]
* @date Created on 2019/10/23.
*/
@Slf4j
@ControllerAdvice(basePackages = {“com.smart”})
public class MyExceptionHandler {
@ExceptionHandler(value = BaseException.class)
@ResponseBody
public JsonResult
}
# zhongtai
## 简介
中台系统,基于Spring Boot开发。
## 模块说明
### framework
公共模块,包含一些工具类、常量、异常类等。
### common-service
通用服务,提供一些通用的功能,如日志记录、缓存管理等。
### account-service
账号管理服务,提供账号的增删改查及其他相关功能。
### permission-service
权限管理服务,提供菜单、角色、用户的增删改查及其他相关功能。
## 使用方式
### 构建项目环境
本项目使用了以下依赖:
* JDK:JDK8以上版本(推荐JDK11)
* Maven:Maven3.x以上版本(推荐Maven3.6.x)
在构建项目前,请确保已经安装好上述依赖,并配置好环境变量。然后可以通过下面两种方式构建项目:
#### 方式一:直接导入IDEA进行构建(推荐)
直接导入`zhongtai`模块即可。导入完成后,在IDEA中运行`com.smart.Application`启动类即可启动整个项目。启动成功后,访问`http://localhost:8080/swagger-ui.html`即可查看所有接口文档。
#### 方式二:通过命令行构建(不推荐)
进入到根目录下执行以下命令:
shell script
mvn clean package -Dmaven.test.skip=true -Pprod
构建成功后,在根目录下会生成一个`zhongtai.zip`压缩包。解压该压缩包并进入解压出来的文件夹中,执行以下命令启动整个项目:
shell script
java -jar zhongtai.jar –spring.profiles.active=prod
启动成功后,访问`http://localhost:8080/swagger-ui.html`即可查看所有接口文档。
zhangyuxuan521/zhongtai null ? Math.round(element.value * multiplier).toFixed(0).replace(/(d)(?=(d{3})+(?!d))/g,
‘$1,’)
: ”,
xPosition,
yPosition);
}
});
});
ctx.restore();
}
};
return chartjsPluginDataLabels;
};zhangyuxuan521/zhongtai<|file_sep # zhongtai
## 简介
中台系统,基于Spring Boot开发。
## 模块说明
### framework
公共模块,包含一些工具类、常量、异常类等。
### common-service
通用服务,提供一些通用的功能,如日志记录、缓存管理等。
### account-service
账号管理服务,提供账号的增删改查及其他相关功能。
### permission-service
权限管理服务,提供菜单、角色、用户的增删改查及其他相关功能。
## 使用方式
### 构建项目环境
本项目使用了以下依赖:
* JDK:JDK8以上版本(推荐JDK11)
* Maven:Maven3.x以上版本(推荐Maven3.6.x)
在构建项目前,请确保已经安装好上述依赖,并配置好环境变量。然后可以通过下面两种方式构建项目:
#### 方式一:直接导入IDEA进行构建(推荐)
直接导入`zhongtai`模块即可。导入完成后,在IDEA中运行`com.smart.Application`启动类即可启动整个项目。启动成功后,访问`http://localhost:8080/swagger-ui.html`即可查看所有接口文档。
#### 方式二:通过命令行构建(不推荐)
进入到根目录下执行以下命令:
shell script
mvn clean package -Dmaven.test.skip=true -Pprod
构建成功后,在根目录下会生成一个`zhongtai.zip`压缩包。解压该压缩包并进入解压出来的文件夹中,执行以下命令启动整个项目:
shell script
java -jar zhongtai.jar –spring.profiles.active=prod
启动成功后,访问 `http://localhost:8080/swagger-ui.html `即可查看所有接口文档。
zhangyuxuan521/zhongtai<|file_sep1 # zhongtai
## 简介
中台系统,基于Spring Boot开发。
## 模块说明
### framework
公共模块,包含一些工具类、常量、异常类等。
### common-service
通用服务,提供一些通用的功能,如日志记录、缓存管理等。
### account-service
账号管理服务,提供账号的增删改查及其他相关功能。
### permission-service
权限管理服务,提供菜单、角色、用户的增删改查及其他相关功能。
## 使用方式
### 构建项目环境
本项目使用了以下依赖:
* JDK:JDK8以上版本(推荐JDK11)
* Maven:Maven3.x以上版本(推荐Maven3.6.x)
在构建项目前,请确保已经安装好上述依赖,并配置好环境变量。然后可以通过下面两种方式构建项目:
#### 方式一:直接导入IDEA进行构建(推荐)
直接导入 `zhongtai `模块即可 。 导入完成后,在IDEA中运行 `com.smart.Application ` 启动类即可启动整个项目 。 启动成功后 ,访问 `http://localhost:8080/swagger-ui.html ` 即可查看所有接口文档 。
#### 方式二:通过命令行构建 (不推荐)
进入到根目录下执行以下命令 :
shell script
mvn clean package -Dmaven.test.skip=true -Pprod
构建成功后 ,在根目录下会生成一个 `zhongtai.zip ` 压缩包 。 解压该压缩包并进入解压出来的文件夹中 ,执行以下命令启动整个项目 :
shell script
java -jar zhongtai.jar –spring.profiles.active=prod
启动成功后 ,访问 ` http://localhost:8080/swagger-ui.html ` 即可查看所有接口文档。zhangyuxuan521/zhongtai<|file_sep详细内容见《架子图.md》。
shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts.<|file_sep|||||||||||||||||||||||||
|-|-|-|-|-|-|-|-|-|-|
|[Codeforces Round #525 Divisor](https://codeforces.com/group/ywZCQ7VXrH/contest/259893/problemset)|Medium|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20Codeforces%20Round%20525%20Divisor.cpp)|O(nloglogn)||
|[Codeforces Round #525 LCM](https://codeforces.com/group/ywZCQ7VXrH/contest/259893/problemset)|Hard|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20Codeforces%20Round%20525%20LCM.cpp)|O(nloglogn)||
|[Codeforces Round #525 Counting Subarrays](https://codeforces.com/group/ywZCQ7VXrH/contest/259893/problemset)|Hard|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20Codeforces%20Round%20525%20Counting%20Subarrays.cpp)|O(n^1.5)||
||||
|-|-|-|
|[Hackerearth Array Queries](https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/practice-problems/beginner/array-query-hackerearth-cf-divisibility-bef5a5f9/?track=practice-problems&jobbie-interview-preparation-kit-datastructures-hashmaps)|Easy|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20HackerearthArrayQueries.cpp)||
||||
|-|-|-|
|[Hackerearth Array Queries using Binary Indexed Tree](https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/practice-problems/beginner/array-query-hackerearth-cf-divisibility-bef5a5f9/?track=practice-problems&jobbie-interview-preparation-kit-datastructures-hashmaps)|Medium|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution_of_HackerearthArrayQueries_using_Binary_Indexed_Tree.cpp)||
||||
|-|-|-|
|[Hackerearth Array Queries using Segment Tree](https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/practice-problems/beginner/array-query-hackerearth-cf-divisibility-bef5a5f9/?track=practice-problems&jobbie-interview-preparation-kit-datastructures-hashmaps)|Hard|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution_of_HackerearthArrayQueries_using_Segment_Tree.cpp)||
||||
|-|-|-|
|[Codility Lesson EquiLeader ](https://app.codility.com/demo/results/trainingGPGQCZ-BK6/) |Medium |[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_EquiLeader.cpp)||
||||
|–|–|–|
|[Codility Lesson PassingCars ]( https://app.codility.com/demo/results/trainingNKRURS-JDU/) | Medium |[Solution]( https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of–Programming-Problems-in—CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_PassingCars.cpp ) ||
||||
|–|–|–|
|[Codility Lesson FrogRiverOne ]( https://app.codility.com/demo/results/trainingNBVADY-WKU/) | Easy |[Solution]( https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of–Programming-Problems-in—CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_FrogRiverOne.cpp ) ||
||||
|–|–|–|
|[Codility Lesson MaxCounters ]( https://app.codility.com/demo/results/trainingTWWB7N-YDA/) | Medium |[Solution]( https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of–Programming-Problems-in—CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_MaxCounters.cpp ) ||
||||
|–|–|–|
|[Codility Lesson MinAvgTwoSlice ]( https://app.codility.com/demo/results/training7EKYZF-X68/) | Medium |[Solution]() ||
<>};
const std::vector& GetIndices(const std::vector<std::vector>& indices,
int64_t axis_size,
int64_t batch_size,
bool reverse_mapping);
# Solution
## Background
This code snippet seems intended for managing tensor operations within machine learning frameworks like TensorFlow or PyTorch. Specifically, it deals with calculating indices necessary for gathering data from tensors based on certain criteria specified by an “axis” parameter among others.
The first part defines a function pointer type named `_gather_indices_fn`, which suggests it points to functions responsible for generating indices used during tensor gathering operations.
The second part describes another function signature named `GetIndices`. This function accepts multiple parameters including nested vectors of integers (`indices`) representing indices across different dimensions of a tensor; an integer (`axis_size`) likely indicating the size along which gathering will occur; another integer (`batch_size`) possibly representing how many such gather operations are batched together; finally, a boolean (`reverse_mapping`) which might indicate whether some form of reverse mapping should be applied when generating these indices.
In typical execution:
1. The caller would provide specific indices where data needs to be gathered from within larger tensors.
2. Depending on whether reverse mapping is required or not along with other parameters like axis size or batch size adjustments might be made.
3. The `_gather_indices_fn`, through its implementation pointed by functions matching its signature would generate appropriate index mappings.
4. These mappings then facilitate efficient data retrieval/gathering from tensors as per user specifications.
## Reasoning
Given that `_gather_indices_fn` is defined as a pointer type meant specifically for index generation functions used during tensor gathering operations:
1. It must point to functions that accept parameters related directly to indexing within tensors—this includes things like specific indices needed from tensors (`indices`) as well as configurations regarding how these indices should be interpreted (`axis_size`, etc.).
Considering typical use cases such as slicing tensors along certain dimensions or batching multiple such operations together efficiently:
The missing part should describe what parameters these functions take—namely information about what parts of tensors are being targeted (via indices), how large those parts are (via axis size), how many such operations might be batched together (batch size), plus any additional configurations like reversing mappings if required.
Therefore:
The missing part likely specifies these inputs directly correlating them with what is later detailed explicitly in another function signature (`GetIndices`). This correlation suggests that whatever `_gather_indices_fn` points towards essentially requires similar input parameters.
## Final Guess
Given all above considerations:
The best guess for what fits into <> would be:
`(const std::vector<std::vector>& indices,
int64_t axis_size,
int64_t batch_size,
bool reverse_mapping)`.
This aligns perfectly with both logical expectations based on naming conventions used throughout C++ standard library types mentioned (`std::vector`, `int64_t`) as well as functional requirements inferred from usage context within tensor manipulation tasks.
***********
{“comparison_to_correct_answer”: “The student’s answer matches exactly with the correct answer provided. Both answers specify the same parameter list `(const std::vector<std::vector>& indices,n int64_t axis_size,n int64_t batch_size,n bool reverse_mapping)` without any deviation.”, “correctness_discussion”: “The student was completely accurate in guessing what fits into <> based on logical expectations derived from naming conventions used throughout C++ standard library types mentioned (`std::vector`, `int64_t`) as well as functional requirements inferred from usage context within tensor manipulation tasks.”, “grade”: 5, “missing_context”: “N”, “missing_context_text”: “OK”, “hint”: “OK”}<>: Hi there! I’m working on implementing Dijkstra’s algorithm using this code snippet:
python
def dijkstra(self):
# create vertex set Q
Q*.create_vertex_set()
self.initialise_distance_table(Q)
while not Q.is_empty():
# u <- vertex in Q with min distance in dist[]
u*.extract_min_from_queue(Q)
if self.dist[u] == infinity:
break
#for each vertex v adjacent to u
for v*.in_adj_list(u):
#alt <- dist[u] + length(u,v)
alt*.calculate_alt_distance(u,v)
#if alt less than dist[v]
if alt*.compare_dist(v):
#dist[v] <- alt
self.update_distance_node(v,alt,Q)
#previous[v] <- u
self.update_previous_dict(v,u)
#update vertex v in Q
Q*.update_vertex(v)
I'm trying to understand how each placeholder method works within this algorithm structure but I'm feeling quite confused about how these pieces fit together practically.
Could you help clarify what each placeholder method should do? For instance:
1. What exactly does `.create_vertex_set()` need to achieve?
2. How should `.extract_min_from_queue(Q)` operate?
Any guidance would be greatly appreciated!
<>: python
Sure! Let’s break down each placeholder method:
1. **`.create_vertex_set()`**: This method should initialize your priority queue (or set) containing all vertices of your graph that need processing initially. Each vertex can start with an initial distance value—typically infinity except for the starting node which gets set to zero.
2. **`.extract_min_from_queue(Q)`**: This operation extracts (removes) the vertex with the smallest tentative distance from your priority queue (Q). This ensures that you’re always processing nodes in order of increasing distance from the source node.
For practical implementation:
– You can use Python’s `heapq` module for efficient priority queue operations.
Feel free to ask if you need further clarification! 😊
<>: Thanks for that! Now I’m thinking about optimizing how distances are updated when extracting vertices from the queue. Instead of updating distances every time we extract a vertex, could we use lazy updates? Also, I’ve read about Fibonacci heaps being more efficient than binary heaps for decrease-key operations—how could I integrate that into my implementation?
<>: Sure! Here’s how you can approach these optimizations:
1. **Lazy Updates**: With lazy updates, instead of immediately updating all adjacent vertices’ distances when extracting a vertex (u), you mark (u) as processed only after extracting it from (Q). When you extract (u), check if it’s marked processed; if so, skip further processing since its shortest path is already finalized.
To implement lazy updates:
– Use an additional set or dictionary to track processed vertices.
– Only update distances when extracting unprocessed vertices.
2. **Fibonacci Heaps**: Fibonacci heaps offer better theoretical efficiency for decrease-key operations compared to binary heaps due to their amortized time complexity advantages.
To integrate Fibonacci heaps:
– You’ll need a library like `fibonacci_heap_mod`, which provides Fibonacci heap functionality.
– Replace your current priority queue implementation with one using this library.
– Ensure methods like insertions and decrease-key operations align with Fibonacci heap APIs.
These changes can make your Dijkstra’s algorithm more efficient under certain conditions!
<>: Great suggestions! Here’s what I’m thinking:
1. For lazy updates, I’ll add a dictionary called `processed_vertices` to track which vertices have been finalized.
python
processed_vertices = {}
# During extraction:
if u not in processed_vertices:
processed_vertices[u] = True
# Proceed with distance updates only if not processed
else:
continue
Does this look right?
Also, regarding Fibonacci heaps—I’ll try integrating them using `fibonacci_heap_mod`. How do I handle decrease-key operations differently compared to binary heaps? Any specific API calls I should focus on?
<>: Your approach looks good! Here’s how you can refine it further:
1. **Lazy Updates**:
Your logic correctly uses a dictionary called `processed_vertices`. Ensure you initialize it at the start and update it whenever you finalize processing a vertex.
python
processed_vertices = {}
while not Q.is_empty():
u = Q.extract_min()
if u not in processed_vertices:
processed_vertices[u] = True
# Proceed with distance updates only if not processed
…
else:
continue
2. **Fibonacci Heaps**:
When using `fibonacci_heap_mod`, focus on these key API calls:
– **Insertion**: Use `insert(key_value)` instead of adding elements directly.
– **Extract Min**: Use `extract_min()` similar to binary heaps but ensure compatibility with Fibonacci heap structure.
– **Decrease-Key**: Use `decrease_key(node_handle)` instead of directly updating values; this maintains heap properties efficiently.
Here’s a basic integration example:
python
from fibonacci_heap_mod import fibonacci_heap_faster as FHF
Q = FHF.FibonacciHeap()
# Insert nodes into heap initially…
for node in graph.nodes():
Q.insert((initial_distance[node], node))
# During processing…
while not Q.is_empty():
_, u = Q.extract_min()
if u not in processed_vertices:
processed_vertices[u] = True
# Calculate alternative distances…
alt_dist_v_for_all_adjacent_nodes()
# Decrease-key operation…
node_handle_v_in_Q.decrease_key(new_alt_dist_v)
Ensure your graph structure supports node handles compatible with Fibonacci heap operations!
<>: Awesome! So just to confirm—if I want my graph nodes compatible with Fibonacci heap operations using handles—is there anything specific I need beyond assigning each node an initial distance when inserting? Do I need additional attributes or methods on my nodes?
<>: To ensure compatibility with Fibonacci heap operations using handles:
1. **Node Handles**: Each node needs an associated handle when inserted into the heap because Fibonacci heaps manage elements via these handles rather than direct references.
2. **Attributes**: Besides assigning initial distances during insertion, ensure each node has attributes accessible via its handle:
python
class NodeHandleWrapper:
def __init__(self, node):
self.node_id_or_reference = node.id_or_reference() # Unique identifier/reference
def get_node(self):
return self.node_id_or_reference
def update_distance(self):
pass # Implement logic if needed elsewhere outside heap context
def __lt__(self, other):
return self.distance() < other.distance()
def __eq__(self, other):
return self.distance() == other.distance()
def __hash__(self):
return hash(self.node_id_or_reference)
def __repr__(self):
return f"NodeHandleWrapper({self.node_id_or_reference})"
def distance(self):
return self.current_distance_value_in_graph_structure()
def decrease_key(self,new_distance):
self.current_distance_value_in_graph_structure() == new_distance
def increase_key(self,new_distance):
self.current_distance_value_in_graph_structure() == new_distance
def delete(self):
remove_node_from_graph_structure()
delete_this_handle_from_heap()
def consolidate_cut(self,cut_node):
perform_consolidation_logic_here()
update_cut_node_with_new_parent_if_needed()
return cut_node.parent
def consolidate_link(self,node_a,node_b):
perform_consolidation_logic_here()
link_nodes_together(node_a,node_b)
return parent_of_linked_nodes
def find_minimum_child(self,node_a,node_b):
find_the_minimum_child_between(node_a,node_b)
return minimum_child
def child_of_root_list_is_marked_(self,node_a,node_b):
determine_if_child_is_marked(node_a,node_b)
return boolean_result
def cut_root_list_by_one_level_(self,cut_node,parent_of_cut_node,new_parent_of_cut_node,cut_children_list_length_before_cutting,parent_was_marked_before_cutting,cut_children_list_length_after_cutting):
perform_cut_logic_here()
Ensure your graph structure supports accessing nodes via identifiers/references compatible with these methods!
<>: Perfect! So just confirming—if my nodes already have unique identifiers or references assigned when creating them—is that enough? Do I need any additional attributes specifically tied to handle compatibility beyond what’s already there?
<>: Yes, having unique identifiers or references assigned when creating your nodes is generally sufficient for compatibility with Fibonacci heap handles.
Here’s what you need:
1. **Unique Identifier**: Ensure each node has a unique identifier/reference used consistently across your graph structure.
2. **Distance Access**: Implement methods like `distance()` within your node class or wrapper class so that handles can access current distances efficiently.
If these are covered by your existing setup:
python
class NodeHandleWrapper:
def __init__(self, node):
self.node_id_or_reference = node.id_or_reference() # Unique identifier/reference
def get_node(self):
return self.node_id_or_reference
def distance(self):
return self.current_distance_value_in_graph_structure()
# Ensure other necessary methods (__lt__, __eq__, etc.) are implemented similarly.
No additional attributes beyond those needed for managing distances are required unless specific logic demands it elsewhere outside heap interactions!
<>: Got it! Everything seems clear now—I’ll go ahead and implement these changes thanks!
<>: You’re welcome! It sounds like you’re all set to implement those changes smoothly 🚀 If you run into any issues or have more questions along the way feel free reach out Happy coding! 😊<>: Hi there,
I’m working on implementing advanced custom loss calculations involving dual softmax cross entropy losses combined through KL divergence regularization terms between two logits sets generated by different model heads outputs (head_i_output vs head_j_output). The idea is inspired by knowledge distillation techniques where we try different regularization terms between logits sets generated by different models’ heads outputs through KL divergence loss term added onto standard cross entropy loss terms calculated separately between ground truth labels vs individual head outputs logits sets respectively before combining them through addition operation upon separate CE losses calculated earlier individually w.r.t respective model head output logits sets w.r.t ground truth labels respectively before adding KL divergence loss term calculated between both model head output logits sets w.r.t each other previously discussed above…
However something seems off because my code isn’t working as expected!
Here’s my buggy version:
python
def compute_loss(logits_i,
logits_j,
label,
alpha):
bce_loss_i=nn.CrossEntropyLoss()(logits=logits_i,
label=label)
bce_loss_j=nn.CrossEntropyLoss()(logits=logits_j,label=label)
kl_loss_ij=F.kl_divergence(logits_i=logits_i,
logits_j=logits_j)
total_loss=bce_loss_i+bce_loss_j+alpha*kl_loss_ij
return total_loss
I keep getting unexpected results when running tests… Can anyone help me figure out what might be going wrong here?
Thanks!
Traceback (most recent call last):
File “”, line XX
loss=compute_loss(logits_head_i,
logits_head_j,
targets_batch,
alpha)
File “”, line XX
total_loss=bce_loss_i+bce_loss_j+alpha*kl_divergence(logits=logits_i,
logits=logits_j)
ValueError Traceback (most recent call last):
File “/usr/local/lib/python3.X/dist-packages/torch/functorial.py”, line XX
return torch.div(f.log(), g)+math.log(b)-torch.div(g.log(), b)
ValueError : unsupported operand type(s) fro torch.div(): ‘float’ mulitple[‘Tensor’]
Any insights would be greatly appreciated!
Thanks!
<>
package com.smart.framework.web;
import com.smart.framework.exception.BaseException;
import com.smart.framework.model.JsonResult;
import lombok.extern.slf4j.Slf4j;
import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.ExceptionHandler;
import org.springframework.web.bind.annotation.ResponseBody;
/**
* @author [email protected]
* @date Created on 2019/10/23.
*/
@Slf4j
@ControllerAdvice(basePackages = {“com.smart”})
public class MyExceptionHandler {
@ExceptionHandler(value = BaseException.class)
@ResponseBody
public JsonResult
}
# zhongtai
## 简介
中台系统,基于Spring Boot开发。
## 模块说明
### framework
公共模块,包含一些工具类、常量、异常类等。
### common-service
通用服务,提供一些通用的功能,如日志记录、缓存管理等。
### account-service
账号管理服务,提供账号的增删改查及其他相关功能。
### permission-service
权限管理服务,提供菜单、角色、用户的增删改查及其他相关功能。
## 使用方式
### 构建项目环境
本项目使用了以下依赖:
* JDK:JDK8以上版本(推荐JDK11)
* Maven:Maven3.x以上版本(推荐Maven3.6.x)
在构建项目前,请确保已经安装好上述依赖,并配置好环境变量。然后可以通过下面两种方式构建项目:
#### 方式一:直接导入IDEA进行构建(推荐)
直接导入`zhongtai`模块即可。导入完成后,在IDEA中运行`com.smart.Application`启动类即可启动整个项目。启动成功后,访问`http://localhost:8080/swagger-ui.html`即可查看所有接口文档。
#### 方式二:通过命令行构建(不推荐)
进入到根目录下执行以下命令:
shell script
mvn clean package -Dmaven.test.skip=true -Pprod
构建成功后,在根目录下会生成一个`zhongtai.zip`压缩包。解压该压缩包并进入解压出来的文件夹中,执行以下命令启动整个项目:
shell script
java -jar zhongtai.jar –spring.profiles.active=prod
启动成功后,访问`http://localhost:8080/swagger-ui.html`即可查看所有接口文档。
zhangyuxuan521/zhongtai null ? Math.round(element.value * multiplier).toFixed(0).replace(/(d)(?=(d{3})+(?!d))/g,
‘$1,’)
: ”,
xPosition,
yPosition);
}
});
});
ctx.restore();
}
};
return chartjsPluginDataLabels;
};zhangyuxuan521/zhongtai<|file_sep # zhongtai
## 简介
中台系统,基于Spring Boot开发。
## 模块说明
### framework
公共模块,包含一些工具类、常量、异常类等。
### common-service
通用服务,提供一些通用的功能,如日志记录、缓存管理等。
### account-service
账号管理服务,提供账号的增删改查及其他相关功能。
### permission-service
权限管理服务,提供菜单、角色、用户的增删改查及其他相关功能。
## 使用方式
### 构建项目环境
本项目使用了以下依赖:
* JDK:JDK8以上版本(推荐JDK11)
* Maven:Maven3.x以上版本(推荐Maven3.6.x)
在构建项目前,请确保已经安装好上述依赖,并配置好环境变量。然后可以通过下面两种方式构建项目:
#### 方式一:直接导入IDEA进行构建(推荐)
直接导入`zhongtai`模块即可。导入完成后,在IDEA中运行`com.smart.Application`启动类即可启动整个项目。启动成功后,访问`http://localhost:8080/swagger-ui.html`即可查看所有接口文档。
#### 方式二:通过命令行构建(不推荐)
进入到根目录下执行以下命令:
shell script
mvn clean package -Dmaven.test.skip=true -Pprod
构建成功后,在根目录下会生成一个`zhongtai.zip`压缩包。解压该压缩包并进入解压出来的文件夹中,执行以下命令启动整个项目:
shell script
java -jar zhongtai.jar –spring.profiles.active=prod
启动成功后,访问 `http://localhost:8080/swagger-ui.html `即可查看所有接口文档。
zhangyuxuan521/zhongtai<|file_sep1 # zhongtai
## 简介
中台系统,基于Spring Boot开发。
## 模块说明
### framework
公共模块,包含一些工具类、常量、异常类等。
### common-service
通用服务,提供一些通用的功能,如日志记录、缓存管理等。
### account-service
账号管理服务,提供账号的增删改查及其他相关功能。
### permission-service
权限管理服务,提供菜单、角色、用户的增删改查及其他相关功能。
## 使用方式
### 构建项目环境
本项目使用了以下依赖:
* JDK:JDK8以上版本(推荐JDK11)
* Maven:Maven3.x以上版本(推荐Maven3.6.x)
在构建项目前,请确保已经安装好上述依赖,并配置好环境变量。然后可以通过下面两种方式构建项目:
#### 方式一:直接导入IDEA进行构建(推荐)
直接导入 `zhongtai `模块即可 。 导入完成后,在IDEA中运行 `com.smart.Application ` 启动类即可启动整个项目 。 启动成功后 ,访问 `http://localhost:8080/swagger-ui.html ` 即可查看所有接口文档 。
#### 方式二:通过命令行构建 (不推荐)
进入到根目录下执行以下命令 :
shell script
mvn clean package -Dmaven.test.skip=true -Pprod
构建成功后 ,在根目录下会生成一个 `zhongtai.zip ` 压缩包 。 解压该压缩包并进入解压出来的文件夹中 ,执行以下命令启动整个项目 :
shell script
java -jar zhongtai.jar –spring.profiles.active=prod
启动成功后 ,访问 ` http://localhost:8080/swagger-ui.html ` 即可查看所有接口文档。zhangyuxuan521/zhongtai<|file_sep详细内容见《架子图.md》。
shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts.<|file_sep|||||||||||||||||||||||||
|-|-|-|-|-|-|-|-|-|-|
|[Codeforces Round #525 Divisor](https://codeforces.com/group/ywZCQ7VXrH/contest/259893/problemset)|Medium|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20Codeforces%20Round%20525%20Divisor.cpp)|O(nloglogn)||
|[Codeforces Round #525 LCM](https://codeforces.com/group/ywZCQ7VXrH/contest/259893/problemset)|Hard|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20Codeforces%20Round%20525%20LCM.cpp)|O(nloglogn)||
|[Codeforces Round #525 Counting Subarrays](https://codeforces.com/group/ywZCQ7VXrH/contest/259893/problemset)|Hard|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20Codeforces%20Round%20525%20Counting%20Subarrays.cpp)|O(n^1.5)||
||||
|-|-|-|
|[Hackerearth Array Queries](https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/practice-problems/beginner/array-query-hackerearth-cf-divisibility-bef5a5f9/?track=practice-problems&jobbie-interview-preparation-kit-datastructures-hashmaps)|Easy|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution%20of%20HackerearthArrayQueries.cpp)||
||||
|-|-|-|
|[Hackerearth Array Queries using Binary Indexed Tree](https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/practice-problems/beginner/array-query-hackerearth-cf-divisibility-bef5a5f9/?track=practice-problems&jobbie-interview-preparation-kit-datastructures-hashmaps)|Medium|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution_of_HackerearthArrayQueries_using_Binary_Indexed_Tree.cpp)||
||||
|-|-|-|
|[Hackerearth Array Queries using Segment Tree](https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/practice-problems/beginner/array-query-hackerearth-cf-divisibility-bef5a5f9/?track=practice-problems&jobbie-interview-preparation-kit-datastructures-hashmaps)|Hard|[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP-Using-STL-and-Others-Concepts/blob/master/Solution_of_HackerearthArrayQueries_using_Segment_Tree.cpp)||
||||
|-|-|-|
|[Codility Lesson EquiLeader ](https://app.codility.com/demo/results/trainingGPGQCZ-BK6/) |Medium |[Solution](https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of-Programming-Problems-in-CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_EquiLeader.cpp)||
||||
|–|–|–|
|[Codility Lesson PassingCars ]( https://app.codility.com/demo/results/trainingNKRURS-JDU/) | Medium |[Solution]( https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of–Programming-Problems-in—CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_PassingCars.cpp ) ||
||||
|–|–|–|
|[Codility Lesson FrogRiverOne ]( https://app.codility.com/demo/results/trainingNBVADY-WKU/) | Easy |[Solution]( https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of–Programming-Problems-in—CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_FrogRiverOne.cpp ) ||
||||
|–|–|–|
|[Codility Lesson MaxCounters ]( https://app.codility.com/demo/results/trainingTWWB7N-YDA/) | Medium |[Solution]( https://github.com/shamim-mahmood/Miscellaneous-Codes-and-Solutions-of–Programming-Problems-in—CPP_Using_STL_and_Others_Concepts-/blob/master/Codility_Lesson_MaxCounters.cpp ) ||
||||
|–|–|–|
|[Codility Lesson MinAvgTwoSlice ]( https://app.codility.com/demo/results/training7EKYZF-X68/) | Medium |[Solution]() ||
<>};
const std::vector& GetIndices(const std::vector<std::vector>& indices,
int64_t axis_size,
int64_t batch_size,
bool reverse_mapping);
# Solution
## Background
This code snippet seems intended for managing tensor operations within machine learning frameworks like TensorFlow or PyTorch. Specifically, it deals with calculating indices necessary for gathering data from tensors based on certain criteria specified by an “axis” parameter among others.
The first part defines a function pointer type named `_gather_indices_fn`, which suggests it points to functions responsible for generating indices used during tensor gathering operations.
The second part describes another function signature named `GetIndices`. This function accepts multiple parameters including nested vectors of integers (`indices`) representing indices across different dimensions of a tensor; an integer (`axis_size`) likely indicating the size along which gathering will occur; another integer (`batch_size`) possibly representing how many such gather operations are batched together; finally, a boolean (`reverse_mapping`) which might indicate whether some form of reverse mapping should be applied when generating these indices.
In typical execution:
1. The caller would provide specific indices where data needs to be gathered from within larger tensors.
2. Depending on whether reverse mapping is required or not along with other parameters like axis size or batch size adjustments might be made.
3. The `_gather_indices_fn`, through its implementation pointed by functions matching its signature would generate appropriate index mappings.
4. These mappings then facilitate efficient data retrieval/gathering from tensors as per user specifications.
## Reasoning
Given that `_gather_indices_fn` is defined as a pointer type meant specifically for index generation functions used during tensor gathering operations:
1. It must point to functions that accept parameters related directly to indexing within tensors—this includes things like specific indices needed from tensors (`indices`) as well as configurations regarding how these indices should be interpreted (`axis_size`, etc.).
Considering typical use cases such as slicing tensors along certain dimensions or batching multiple such operations together efficiently:
The missing part should describe what parameters these functions take—namely information about what parts of tensors are being targeted (via indices), how large those parts are (via axis size), how many such operations might be batched together (batch size), plus any additional configurations like reversing mappings if required.
Therefore:
The missing part likely specifies these inputs directly correlating them with what is later detailed explicitly in another function signature (`GetIndices`). This correlation suggests that whatever `_gather_indices_fn` points towards essentially requires similar input parameters.
## Final Guess
Given all above considerations:
The best guess for what fits into <> would be:
`(const std::vector<std::vector>& indices,
int64_t axis_size,
int64_t batch_size,
bool reverse_mapping)`.
This aligns perfectly with both logical expectations based on naming conventions used throughout C++ standard library types mentioned (`std::vector`, `int64_t`) as well as functional requirements inferred from usage context within tensor manipulation tasks.
***********
{“comparison_to_correct_answer”: “The student’s answer matches exactly with the correct answer provided. Both answers specify the same parameter list `(const std::vector<std::vector>& indices,n int64_t axis_size,n int64_t batch_size,n bool reverse_mapping)` without any deviation.”, “correctness_discussion”: “The student was completely accurate in guessing what fits into <> based on logical expectations derived from naming conventions used throughout C++ standard library types mentioned (`std::vector`, `int64_t`) as well as functional requirements inferred from usage context within tensor manipulation tasks.”, “grade”: 5, “missing_context”: “N”, “missing_context_text”: “OK”, “hint”: “OK”}<>: Hi there! I’m working on implementing Dijkstra’s algorithm using this code snippet:
python
def dijkstra(self):
# create vertex set Q
Q*.create_vertex_set()
self.initialise_distance_table(Q)
while not Q.is_empty():
# u <- vertex in Q with min distance in dist[]
u*.extract_min_from_queue(Q)
if self.dist[u] == infinity:
break
#for each vertex v adjacent to u
for v*.in_adj_list(u):
#alt <- dist[u] + length(u,v)
alt*.calculate_alt_distance(u,v)
#if alt less than dist[v]
if alt*.compare_dist(v):
#dist[v] <- alt
self.update_distance_node(v,alt,Q)
#previous[v] <- u
self.update_previous_dict(v,u)
#update vertex v in Q
Q*.update_vertex(v)
I'm trying to understand how each placeholder method works within this algorithm structure but I'm feeling quite confused about how these pieces fit together practically.
Could you help clarify what each placeholder method should do? For instance:
1. What exactly does `.create_vertex_set()` need to achieve?
2. How should `.extract_min_from_queue(Q)` operate?
Any guidance would be greatly appreciated!
<>: python
Sure! Let’s break down each placeholder method:
1. **`.create_vertex_set()`**: This method should initialize your priority queue (or set) containing all vertices of your graph that need processing initially. Each vertex can start with an initial distance value—typically infinity except for the starting node which gets set to zero.
2. **`.extract_min_from_queue(Q)`**: This operation extracts (removes) the vertex with the smallest tentative distance from your priority queue (Q). This ensures that you’re always processing nodes in order of increasing distance from the source node.
For practical implementation:
– You can use Python’s `heapq` module for efficient priority queue operations.
Feel free to ask if you need further clarification! 😊
<>: Thanks for that! Now I’m thinking about optimizing how distances are updated when extracting vertices from the queue. Instead of updating distances every time we extract a vertex, could we use lazy updates? Also, I’ve read about Fibonacci heaps being more efficient than binary heaps for decrease-key operations—how could I integrate that into my implementation?
<>: Sure! Here’s how you can approach these optimizations:
1. **Lazy Updates**: With lazy updates, instead of immediately updating all adjacent vertices’ distances when extracting a vertex (u), you mark (u) as processed only after extracting it from (Q). When you extract (u), check if it’s marked processed; if so, skip further processing since its shortest path is already finalized.
To implement lazy updates:
– Use an additional set or dictionary to track processed vertices.
– Only update distances when extracting unprocessed vertices.
2. **Fibonacci Heaps**: Fibonacci heaps offer better theoretical efficiency for decrease-key operations compared to binary heaps due to their amortized time complexity advantages.
To integrate Fibonacci heaps:
– You’ll need a library like `fibonacci_heap_mod`, which provides Fibonacci heap functionality.
– Replace your current priority queue implementation with one using this library.
– Ensure methods like insertions and decrease-key operations align with Fibonacci heap APIs.
These changes can make your Dijkstra’s algorithm more efficient under certain conditions!
<>: Great suggestions! Here’s what I’m thinking:
1. For lazy updates, I’ll add a dictionary called `processed_vertices` to track which vertices have been finalized.
python
processed_vertices = {}
# During extraction:
if u not in processed_vertices:
processed_vertices[u] = True
# Proceed with distance updates only if not processed
else:
continue
Does this look right?
Also, regarding Fibonacci heaps—I’ll try integrating them using `fibonacci_heap_mod`. How do I handle decrease-key operations differently compared to binary heaps? Any specific API calls I should focus on?
<>: Your approach looks good! Here’s how you can refine it further:
1. **Lazy Updates**:
Your logic correctly uses a dictionary called `processed_vertices`. Ensure you initialize it at the start and update it whenever you finalize processing a vertex.
python
processed_vertices = {}
while not Q.is_empty():
u = Q.extract_min()
if u not in processed_vertices:
processed_vertices[u] = True
# Proceed with distance updates only if not processed
…
else:
continue
2. **Fibonacci Heaps**:
When using `fibonacci_heap_mod`, focus on these key API calls:
– **Insertion**: Use `insert(key_value)` instead of adding elements directly.
– **Extract Min**: Use `extract_min()` similar to binary heaps but ensure compatibility with Fibonacci heap structure.
– **Decrease-Key**: Use `decrease_key(node_handle)` instead of directly updating values; this maintains heap properties efficiently.
Here’s a basic integration example:
python
from fibonacci_heap_mod import fibonacci_heap_faster as FHF
Q = FHF.FibonacciHeap()
# Insert nodes into heap initially…
for node in graph.nodes():
Q.insert((initial_distance[node], node))
# During processing…
while not Q.is_empty():
_, u = Q.extract_min()
if u not in processed_vertices:
processed_vertices[u] = True
# Calculate alternative distances…
alt_dist_v_for_all_adjacent_nodes()
# Decrease-key operation…
node_handle_v_in_Q.decrease_key(new_alt_dist_v)
Ensure your graph structure supports node handles compatible with Fibonacci heap operations!
<>: Awesome! So just to confirm—if I want my graph nodes compatible with Fibonacci heap operations using handles—is there anything specific I need beyond assigning each node an initial distance when inserting? Do I need additional attributes or methods on my nodes?
<>: To ensure compatibility with Fibonacci heap operations using handles:
1. **Node Handles**: Each node needs an associated handle when inserted into the heap because Fibonacci heaps manage elements via these handles rather than direct references.
2. **Attributes**: Besides assigning initial distances during insertion, ensure each node has attributes accessible via its handle:
python
class NodeHandleWrapper:
def __init__(self, node):
self.node_id_or_reference = node.id_or_reference() # Unique identifier/reference
def get_node(self):
return self.node_id_or_reference
def update_distance(self):
pass # Implement logic if needed elsewhere outside heap context
def __lt__(self, other):
return self.distance() < other.distance()
def __eq__(self, other):
return self.distance() == other.distance()
def __hash__(self):
return hash(self.node_id_or_reference)
def __repr__(self):
return f"NodeHandleWrapper({self.node_id_or_reference})"
def distance(self):
return self.current_distance_value_in_graph_structure()
def decrease_key(self,new_distance):
self.current_distance_value_in_graph_structure() == new_distance
def increase_key(self,new_distance):
self.current_distance_value_in_graph_structure() == new_distance
def delete(self):
remove_node_from_graph_structure()
delete_this_handle_from_heap()
def consolidate_cut(self,cut_node):
perform_consolidation_logic_here()
update_cut_node_with_new_parent_if_needed()
return cut_node.parent
def consolidate_link(self,node_a,node_b):
perform_consolidation_logic_here()
link_nodes_together(node_a,node_b)
return parent_of_linked_nodes
def find_minimum_child(self,node_a,node_b):
find_the_minimum_child_between(node_a,node_b)
return minimum_child
def child_of_root_list_is_marked_(self,node_a,node_b):
determine_if_child_is_marked(node_a,node_b)
return boolean_result
def cut_root_list_by_one_level_(self,cut_node,parent_of_cut_node,new_parent_of_cut_node,cut_children_list_length_before_cutting,parent_was_marked_before_cutting,cut_children_list_length_after_cutting):
perform_cut_logic_here()
Ensure your graph structure supports accessing nodes via identifiers/references compatible with these methods!
<>: Perfect! So just confirming—if my nodes already have unique identifiers or references assigned when creating them—is that enough? Do I need any additional attributes specifically tied to handle compatibility beyond what’s already there?
<>: Yes, having unique identifiers or references assigned when creating your nodes is generally sufficient for compatibility with Fibonacci heap handles.
Here’s what you need:
1. **Unique Identifier**: Ensure each node has a unique identifier/reference used consistently across your graph structure.
2. **Distance Access**: Implement methods like `distance()` within your node class or wrapper class so that handles can access current distances efficiently.
If these are covered by your existing setup:
python
class NodeHandleWrapper:
def __init__(self, node):
self.node_id_or_reference = node.id_or_reference() # Unique identifier/reference
def get_node(self):
return self.node_id_or_reference
def distance(self):
return self.current_distance_value_in_graph_structure()
# Ensure other necessary methods (__lt__, __eq__, etc.) are implemented similarly.
No additional attributes beyond those needed for managing distances are required unless specific logic demands it elsewhere outside heap interactions!
<>: Got it! Everything seems clear now—I’ll go ahead and implement these changes thanks!
<>: You’re welcome! It sounds like you’re all set to implement those changes smoothly 🚀 If you run into any issues or have more questions along the way feel free reach out Happy coding! 😊<>: Hi there,
I’m working on implementing advanced custom loss calculations involving dual softmax cross entropy losses combined through KL divergence regularization terms between two logits sets generated by different model heads outputs (head_i_output vs head_j_output). The idea is inspired by knowledge distillation techniques where we try different regularization terms between logits sets generated by different models’ heads outputs through KL divergence loss term added onto standard cross entropy loss terms calculated separately between ground truth labels vs individual head outputs logits sets respectively before combining them through addition operation upon separate CE losses calculated earlier individually w.r.t respective model head output logits sets w.r.t ground truth labels respectively before adding KL divergence loss term calculated between both model head output logits sets w.r.t each other previously discussed above…
However something seems off because my code isn’t working as expected!
Here’s my buggy version:
python
def compute_loss(logits_i,
logits_j,
label,
alpha):
bce_loss_i=nn.CrossEntropyLoss()(logits=logits_i,
label=label)
bce_loss_j=nn.CrossEntropyLoss()(logits=logits_j,label=label)
kl_loss_ij=F.kl_divergence(logits_i=logits_i,
logits_j=logits_j)
total_loss=bce_loss_i+bce_loss_j+alpha*kl_loss_ij
return total_loss
I keep getting unexpected results when running tests… Can anyone help me figure out what might be going wrong here?
Thanks!
Traceback (most recent call last):
File “”, line XX
loss=compute_loss(logits_head_i,
logits_head_j,
targets_batch,
alpha)
File “”, line XX
total_loss=bce_loss_i+bce_loss_j+alpha*kl_divergence(logits=logits_i,
logits=logits_j)
ValueError Traceback (most recent call last):
File “/usr/local/lib/python3.X/dist-packages/torch/functorial.py”, line XX
return torch.div(f.log(), g)+math.log(b)-torch.div(g.log(), b)
ValueError : unsupported operand type(s) fro torch.div(): ‘float’ mulitple[‘Tensor’]
Any insights would be greatly appreciated!
Thanks!
<>