Skip to main content

Overview of AFC Women's Champions League Group C

The AFC Women's Champions League is a prestigious tournament that showcases the best women's football clubs in Asia. Group C features some of the most competitive teams, each vying for a spot in the knockout stages. With matches scheduled for tomorrow, fans and bettors alike are eagerly anticipating the outcomes. This article provides an in-depth analysis of the teams, key players, and expert betting predictions for tomorrow's fixtures.

No football matches found matching your criteria.

The group consists of four teams: Team A, Team B, Team C, and Team D. Each team has demonstrated exceptional skill and strategy throughout the group stage. The matches tomorrow will be crucial in determining which teams advance to the next round.

Team Profiles

Team A

Team A has been a dominant force in this tournament, boasting a strong defense and an attacking lineup led by their star forward, Player X. Their recent performances have shown consistency and resilience, making them a formidable opponent.

Team B

Team B is known for their tactical play and midfield control. With Player Y orchestrating plays from the center, they have managed to secure crucial victories against tough opponents.

Team C

Team C has surprised many with their aggressive style of play. Their young squad has shown remarkable potential, with Player Z emerging as a key player in their offensive strategies.

Team D

Team D relies on their experienced squad and strategic gameplay. Their defense has been particularly impressive, often thwarting attacks from stronger teams.

Betting Predictions for Tomorrow's Matches

Match 1: Team A vs Team B

This match is expected to be a tactical battle between two evenly matched teams. Experts predict a close game with both teams having equal chances of winning.

  • Betting Tip: Draw – The match is likely to end in a draw due to both teams' defensive strengths.
  • Possible Outcome: Both teams score – Given their attacking capabilities, it's possible both will find the net.

Match 2: Team C vs Team D

This fixture pits Team C's youthful energy against Team D's seasoned experience. The outcome could hinge on which team can better exploit the other's weaknesses.

  • Betting Tip: Over 2.5 goals – Expect an open game with plenty of scoring opportunities.
  • Possible Outcome: Team C wins – Their aggressive play might give them the edge over Team D.

In-Depth Analysis of Key Players

Player X (Team A)

Player X has been instrumental in Team A's success this season. Known for her speed and precision in front of goal, she poses a significant threat to any defense.

Player Y (Team B)

The midfield maestro of Team B, Player Y excels at controlling the tempo of the game and setting up scoring opportunities for her teammates.

Player Z (Team C)

A rising star in women's football, Player Z brings creativity and flair to her team’s attack. Her ability to change the course of a match makes her one to watch.

Tactical Insights

Analyzing past matches reveals that Teams A and B often rely on counter-attacks to break down defenses. In contrast, Teams C and D focus on maintaining possession and building pressure through sustained pressure.

  • Tactical Insight:

  • -AFC Women’s Champions League Group C Match Strategy:

  • -Influence on Betting Predictions:

  • -Focusing on Defensive Plays:

  • -Potential Game-Changers:

  • -Evaluating Midfield Dynamics:

  • -Analyzing Offensive Strategies:

  • -Predicting Turnovers Impact:

  • -Evaluating Goalkeeper Performance:

  • -Possession vs Counter-Attack Effectiveness:

  • -Influence of Weather Conditions on Play Style:

  • The role of weather conditions cannot be underestimated as they can significantly impact gameplay style—wet conditions might favor defensive strategies while dry conditions could encourage more attacking plays.

    • Movement Patterns: Analyzing how players position themselves during matches helps predict potential scoring opportunities or defensive lapses.
    • Mental Fortitude: Assessing how well players handle pressure situations can indicate performance under high-stakes scenarios.
    • Squad Depth: Evaluating bench strength offers insights into how well substitutes can maintain or change game momentum.

      Beyond individual prowess lies collective synergy; understanding how well players coordinate can reveal much about team dynamics during critical moments.

      Detailed Betting Analysis

      Betting Odds Considerations

      Betting odds are influenced by numerous factors including historical performance data, current form assessments as well as public sentiment towards specific outcomes.

      • Odds Fluctuations: Monitoring changes in odds leading up to matches provides insights into market perceptions regarding likely outcomes.
          -Historical Data Analysis:
                  (i)Past Match Outcomes
                  (ii)Head-to-Head Records
                  (iii)Performance Trends
          : These factors help gauge probable results based on previous encounters.
          -Current Form Assessment:
                  (i)Recent Match Results
                  (ii)Injuries & Suspensions
                  (iii)Training Reports
          : Evaluating recent performances gives insight into team readiness.
          -Public Sentiment:
                  (i)Social Media Buzz
                  (ii)Expert Opinions
               </>
; Public opinion often sways betting markets significantly.<|repo_name|>Siri2020/siri2020.github.io<|file_sep|>/_posts/2020-07-15-test.md --- layout: post title: Test Post date: '2020-07-15T12:50' author: Siri --- # Test Post This is just a test post for my blog. ## Subheading Here are some details about what I'm testing: - Markdown syntax - HTML tags within Markdown - Blog layout I'm excited to see how this all comes together! --- ### Another Subheading Let me add more content here:
This is some HTML inside my Markdown file!
Markdown supports inline HTML like above. ## Conclusion That wraps up my test post! I'll keep refining my blog setup based on these tests. [0]: import os.path as osp [1]: import os [2]: import numpy as np [3]: import random [4]: from torch.utils.data import Dataset [5]: class UCF101(Dataset): [6]: def __init__(self, [7]: root, [8]: num_segments=8, [9]: modality='RGB', [10]: image_tmpl='{:05d}.jpg', [11]: transform=None, [12]: random_shift=True, [13]: test_mode=False): [14]: self.root = root [15]: self.num_segments = num_segments [16]: self.modality = modality [17]: self.image_tmpl = image_tmpl [18]: self.transform = transform [19]: self.random_shift = random_shift [20]: self.test_mode = test_mode # sample frame indices self._parse_list() # check before loading # load frames def _load_image(self,path): return path if len(self.frames_indices)==0: return None if self.modality=='RGB': path=self.frames_indices[self.frame_ind] return self._load_image(path) elif self.modality=='Flow': path_x=self.frames_indices[self.frame_ind][0] path_y=self.frames_indices[self.frame_ind][1] img_x=self._load_image(path_x) img_y=self._load_image(path_y) return img_x,img_y if not osp.exists(self.root): raise RuntimeError('Dataset not found or corrupted.' + ' You may need to re-download it.') if not osp.exists(osp.join(self.root,'trainlist01.txt')): raise RuntimeError('Dataset not found or corrupted.' + ' You may need to re-download it.') if not osp.exists(osp.join(self.root,'trainlist01.txt')): raise RuntimeError('Dataset not found or corrupted.' + ' You may need to re-download it.') if not osp.exists(osp.join(self.root,'trainlist01.txt')): raise RuntimeError('Dataset not found or corrupted.' + ' You may need to re-download it.') if not osp.exists(osp.join(self.root,'trainlist01.txt')): raise RuntimeError('Dataset not found or corrupted.' + ' You may need to re-download it.') if not osp.exists(osp.join(self.root,'trainlist01.txt')): raise RuntimeError('Dataset not found or corrupted.' + ' You may need to re-download it.') if not osp.exists(osp.join(self.root,'full_list.txt')): raise RuntimeError('Dataset not found or corrupted.' + ' You may need to re-download it.') # sample frame indices # check before loading # load frames ***** Tag Data ***** ID: 4 description: Loading frames based on modality ('RGB' or 'Flow'), including handling different paths for each frame index. start line: 75 end line: 93 dependencies: - type: Method name: _load_image start line: 95 end line: 97 context description: This snippet handles loading images based on different modalities, ensuring correct paths are used depending on whether RGB or Flow data is required. algorithmic depth: 4 algorithmic depth external: N obscurity: 4 advanced coding concepts: 4 interesting for students: five stars self contained: N ************* ## Suggestions for complexity 1. **Multi-threaded Image Loading:** Implement multi-threaded loading so that images are loaded concurrently rather than sequentially. 2. **Cache Mechanism:** Introduce caching mechanisms so that once an image is loaded once within certain time intervals or memory constraints, subsequent loads retrieve from cache rather than disk. 3. **Dynamic Modality Handling:** Add support for dynamically changing modalities within a single session without restarting/loading everything again. 4. **Error Recovery Mechanism:** Implement sophisticated error recovery mechanisms that attempt multiple retries with exponential backoff when an image fails to load. 5. **Augmentation Pipeline Integration:** Integrate an augmentation pipeline directly within `_load_frames` method such that images are augmented (e.g., flipped, rotated) dynamically during loading based on certain criteria. ## Conversation <|user|>"Hi AI assistant I have this code snippet where I am trying load images based on different modalities but Im thinking about making it more advanced [SNIPPET] How do you suggest we could make this more robust?"<|end|> <|assistant|>"Hello! Your code snippet already handles basic RGB and Flow modalities quite well. Here are some suggestions: 1. **Multi-threaded Image Loading**: We can use Python’s `concurrent.futures` module to load images concurrently which should improve performance especially when dealing with large datasets. Would you like me to demonstrate how we could implement multi-threaded loading? Or do you have another suggestion from above you want me expand upon?"<|end|> <|user|>"Yes please show me how we can implement multi-threaded loading specifically i want each image loaded independently but still ensure flow data pairs stay synchronized"<|end|> <|assistant|>"Sure! We can use `ThreadPoolExecutor` from `concurrent.futures` module for this purpose while ensuring synchronization between Flow data pairs by using thread-safe constructs like locks where necessary. Here’s an example modification: python from concurrent.futures import ThreadPoolExecutor def _load_frames_concurrently(self): if len(self.frames_indices) ==0: return None def load_rgb(): path = self.frames_indices[self.frame_ind] return self._load_image(path) def load_flow(): path_x = self.frames_indices[self.frame_ind][0] path_y = self.frames_indices[self.frame_ind][1] with ThreadPoolExecutor() as executor: future_x = executor.submit(self._load_image, path_x) future_y = executor.submit(self._load_image, path_y) img_x = future_x.result() img_y = future_y.result() return img_x,img_y if self.modality == "RGB": return load_rgb() elif self.modality == "Flow": return load_flow() # Use this new method instead of your existing logic This approach ensures that even though RGB images are loaded directly via threads due simplicity; Flow images maintain synchronization between x & y channels by waiting till both futures complete before returning."<|end|> 1] + [x + delta * v_hat * cos(theta_hat[i]) + delta * u_hat * sin(theta_hat[i]) + sigma_w * n[i] for i,x,u_hat,v_hat,n,sigma_w,delta in zip(range(N), x_init[:-1], u_init[:-1], v_init[:-1], n_w[:N], sigma_w_vec[:-1], delta_t)] y_meas.append(y_meas[-1] + [x + delta * v_hat * cos(theta_hat[i]) + delta * u_hat * sin(theta_hat[i]) + sigma_v * n_v[i] for i,x,u_hat,v_hat,n_v,sigma_v in zip(range(N), x_meas[-1], u_meas[:-1], v_meas[:-1], n_vv[:N], sigma_v_vec)]) else: x.append(x_init[-1]) y_meas.append(y_meas[-1]) u_meas.append(u_meas[-1]) v_meas.append(v_meas[-1]) theta_measured.append(theta_measured[-1]) theta_hat.append(theta_init) x_est.append(x_est[-1]) P_est.append(P_est[-init_kalman_length]) else: x_temp=np.asarray(x).reshape(-1,N) y_temp=np.asarray(y_meas).reshape(-init_kalman_length,-1,N) u_temp=np.asarray(u_meas).reshape(-init_kalman_length,-1,N) v_temp=np.asarray(v_meas).reshape(-init_kalman_length,-1,N) theta_temp=np.asarray(theta_measured).reshape(-init_kalman_length,-1,N) R_radar=R_radar.reshape(9,-) R_lidar=R_lidar.reshape(6,-) Q=[Q_road,Q_nonroad] # print(Q_road.shape,Q_nonroad.shape,R_radar.shape,R_lidar.shape,x_temp.shape,y_temp.shape,u_temp.shape,v_temp.shape, # theta_temp.shape,P_est[-init_kalman_length].shape) # print("Radar measurment",y_temp[:,0,:].T,"Lidar measurment",y_temp[:,6,:].T,"imu measurment",theta_temp[:,5,:].T) # print("Estimate state",x_est[-init_kalman_length],"Estimate covariance",P_est[-init_kalman_length]) # # #print("Radar measurement ",y_temp[:,0,:].T,"Lidar measurement ",y_temp[:,6,:].T,"imu measurement ",theta_temp[:,5,:].T) print("Estimate state ",x_est[-init_kalman_length],"Estimate covariance ",P_est[-init_kalman_length]) Q_matrix=Q[int(use_road)] H_matrix=H[int(use_road)] R_matrix=R[int(use_sensor)] Pk,Pk_minus,Pk_minus_next,Kk=x_update(x=x_init,y=y_last,u=u_last,v=v_last, n=n_w,n_vv=n_vv,n_theta=n_theta, Q_matrix=Q_matrix,H_matrix=H_matrix,R_matrix=R_matrix, Pk=P_est[-init_kalman_length],Pk_minus=P_prior,Pk_minus_next=P_posterior,Kk=K_prior) x_init=x_posterior.copy() P_prior=P_posterior.copy() print("Posterior state ",x_posterior,"Posterior covariance ",P_posterior) update_covariance=True else:#if false condition inside while loop ##prediction step n=N+M+K #######IMU prediction###### ##IMU prediction noise cov_imu=np.diag(np.array([sigma_theta**2]*K)) cov_imu=cov_imu*delta_t**4/4 ##IMU prediction matrix F_imu=np.zeros((K,K)) np.fill_diagonal(F_imu,np.ones(K)-delta_t**2/2.) F_imu=F_imu*sigma_theta**2 ###### ### ##### ###### ### ######Radar prediction###### cov_radar=np.diag(np.array([sigma_w**2]*N)) cov_radar=cov_radar*delta_t**4/4 F_radar=np.zeros((N,N)) np.fill_diagonal(F_radar,np.ones(N)-delta_t**2/2.) F_radar=F_radian*sigma_w**2 ##### ### ###### #####lidar prediction##### cov_lidar=np.diag(np.array([sigma_lidar**2]*M)) cov_lidar=cov_lidar*delta_t**4/4 F_lidar=np.zeros((M,M)) np.fill_diagonal(F_lidar,np.ones(M)-delta_t**2/2.) F_lidar=F_lidar*sigma_lidar**2 ##### ##########prediction############# F_bar=np.block([[F_imu,np.zeros((K,M)),np.zeros((K,N))],[np.zeros((M,K)),F_lidar,np.zeros((M,N))],[np.zeros((N,K)),np.zeros((N,M)),F_radar]]) Q_bar=np.block([[cov_imu,np.zeros((K,M)),np.zeros((K,N))],[np.zeros((M,K)),cov_lidar,np.zeros((M,N))],[np.zeros((N,K)),np.zeros((N,M)),cov_radar]]) P_pred=F_bar.dot(P_prior).dot(F_bar.T)+Q_bar if update_covariance==True: #####measurement step##### #########Rada measurement matrix############## H_R=[cos(theta_pred),sin(theta_pred),zeros(K+N+M),ones(N),zeros(N)] H_R=[H_R,H_Rd,H_Rdd,H_Rddd] H_R=[array(h_i).reshape(len(h_i),,)for h_i in H_R] H_R=array(H_R).transpose() ########Lidars measurement matrix########### H_L=[ones(M),zeros(M),zeros(K+N),zeros(M),ones(M)] H_L=[H_L,zeros(M*N+M*K+N*K)] H_L=[array(h_i).reshape(len(h_i),,)for h_i in H_L] H_L=array(H_L).transpose() #####measurement covariance########## R_bar=zeros(n) if sensor_type=="radar": R_bar[n-M:n]=R_radar.reshape(n-M,) elif sensor_type=="lidar": R_bar[M:M+N]=R_lidar.reshape(M+N,) else:#both sensor types R_bar[n-M:n]=R_radar.reshape(n-M,) R_bar[M:M+N]=R_lidar.reshape(M+N,) #######################Kalman gain############################## K_gain=P_pred.dot(H_T).dot(inv(H.dot(P_pred).dot(H_T)+R_bar)) ########update step############# x_update=(x_pred+K_gain.dot(z-measurement)).tolist() P_update=(identity(n)-K_gain.dot(H)).dot(P_pred) if use_sensor=="radar": z=z_rad.copy() elif use_sensor=="lidar": z=z_lid.copy() else:#both sensors available z=z_both.copy() ##################################next iteration################################# x_pred=x_update.copy() P_prior=P_update.copy() print("Update state ",x_update,"Update covariance ",P_update) ################################################## ################################################## ################################################## ################################################## ################################################## ################################################## ################################################## ################################################## while True: #######IMU update####### ##IMU update noise ##### ### ###### #####radar update##### ######radar update noise###### n_w=numpy.random.normal(loc=mu,scale=sigma,size=N) ######radar update matrix###### H_rad=[cos(theta_prev),sin(theta_prev),zeros(K+M),ones(N)]#,zeros(N)] H_rad=array(H_rad).transpose() ######lidar update noise###### n_lv=numpy.random.normal(loc=mu,scale=sigma,size=M) ######lidar update matrix###### H_lda=zeros(n) H_lda[:M]=ones(M)#first M elements set ones rest zeros ######state vector###### theta_prev=array([theta_prev]).reshape(len(theta_prev)) x_prev=array([x_prev]).reshape(len(x_prev)) v_prev=array([v_prev]).reshape(len(v_prev)) u_prev=array([u_prev]).reshape(len(u_prev)) state_vector=x_prev.tolist()+v_prev.tolist()+u_prev.tolist()+theta_prev.tolist() #######measurement vector####### z_rad=zeros(N) z_lda=zeros(M) z_both=zeros(n) if sensor_type=="radar": z=z_rad.copy() elif sensor_type=="lidar": z=z_lda.copy() else:#both sensors available z=z_both.copy() while True: #######IMU prediction###### ##IMU prediction noise ##### ### ###### #####radar prediction##### ######radar prediction noise#### n_wr=numpy.random.normal(loc=mu,scale=sigma,size=N) ######radar prediciton matrix#### F_rd=[cos(theta_prd)*delta_t*sin(theta_prd)*delta_t*cos(theta_prd)*delta_t*cos(theta_prd)*delta_t*sin(theta_prd)*delta_t*sin(theta_prd)*delta_t*sin(theta_prd)*delta_t, sin(theta_prd)*delta_t*cos(theta_prd)*delta_t*-sin(theta_prd)*delta_t*sin(theta_prd)*delta_t*cos(theta_prd)** -delta*t*sin(theta_prd)** -delta*t*cos(theta_prd)** -delta*t*sin(theta_prd)** -delta*t*cos(theta_prd)** -delta*t*sin(theta_prd)** , zeros(K+M+N),(ones(N))*delta*t,(ones(N))*0,(ones(N))*0,(ones(N))*0,(ones(N))*0,(ones(N))*0] F_rd=array(F_rd).transpose() #####lidar predicition noise#### n_lv=numpy.random.normal(loc=mu,scale=sigma,size=M) #####lidar predicition matrix#### F_ld=zeros(n) F_ld[:M]=(ones(M))*delat*t #####state vector##### theta_prd=array([theta_prd]).reshape(len(tetha_prd)) x_prd=array([x_prd]).reshape(len(x_prd)) v_prd=array([v_pdr]).reshape(len(v_pdr)) u_pdr=array([u_pdr]).reshape(len(u_pdr)) state_vector=x_prd.tolist()+v_pdr.tolist()+u_pdr.tolist()+tetha_pdr.tolist() #######prediction step####### ######prediction matrix########### A_predict=predictor(state_vector) #######update step####### ######update matrix########### A_update_updater(state_vector,z) print(A_predict,A_update_updater) while True: #######IMU update####### ##IMU update noise ##### ### ###### #####radar update##### ######radar update noise###### n_wr=numpy.random.normal(loc=mu,scale=sigma,size=N) ######radar update matrix###### H_rd=[cos(tetha_updte),sin(tetha_updte)],[],[],[],[],[],[]#first N elements set cosine values second N elements set sine values rest zeros H_rd[array(H_rd)].transpose() #####lidr update noise###### n_lv=numpy.random.normal(loc=mu,scale=sigma,size=M) #####lidr updation matrix##### H_ld=zeros(n) H_ld[:M]=one(s=M)#first M elements set ones rest zeros #####state vector##### tetha_updte=array([tetha_updte]).resahpe(len(tetha_updte)) X_updte=array(X_updteliste()).resahpe(lent(X_updteliste())) V_updte=list(V_updteliste()).resahpe(lent(V_updteliste())) U_updte=list(U_updteliste()).resahpe(lent(U_updteliste())) state_vector=X_udtelist().tolist()+V_udtelist().tolist()+U_udtelist().tolist()+tetha_udtelist().tolist() #######update step####### Z=[]#measuremet vector initialization if sensor_type=="radardata":#only radar data available Z.extend(Z,Radardata()) else: Z.extend(Z,Lidardata()) else:#both sensors available Z.extend(Z,Radardata(),Lidardata()) print(Z) while True: #######IMU prediction###### ##IMU prediction noise ##### ### ###### #####radardata predicition##### ######raddara predicition noize#### n_wr=numpy.random.normal(loc=mu,scale=sigma,size=N) ######raddara predicition marix#### F_rd=[cos(tethaprediction)]*[sin(tethaprediction)]*[zeros(K+M)]*[ones[N)]*(zero[N)]*(zero[N)]*(zero[N)]*(zero[N)]*(zero[N)] F_rd[array(F_rd)].transpos() #####liladr predicition noize#### n_lv=numpy.random.normal(loc=mu,scale=sigma,size=M) #####liladr predicition marix#### F_la=zeros(n) F_la[:M]=(one(s=M))#first M elements set ones rest zeros #####state vector##### thetaprediction=array([thetaprediction]).reshape(lenth(etaprediction)) Xpredicton=list(Xpredicton()).reshape(lent(Xpredicton())) Vpredicton=list(Vpredicton()).reshape(lent(Vpredicton())) Upredicton=list(Upredicton()).reshape(lent(Upredicton())) state_vector=Xpredicton().tolist()+Vpredicton().tolist()+Upredicon().tolist()+thetaprediction().tolist() #######prediction step####### A_predict=predictor(state_vector) while True: #######IMUPREDICTION UPDATE######### ### IMUPREDICTION UPDATE NOISE ### ################Kalaman Filter################### import numpy as np def kalaman_filter(sensor_data): ##initialization parameters sensor_data["initial_state"]=[] sensor_data["initial_error"]=[] sensor_data["transition_model"]=[] sensor_data["observation_model"]=[] sensor_data["process_noise"]=[] sensor_data["observation_noise"]=[] def kalaman_filter(sensor_data): #initialization parameters initial_state=sensor_data["initial_state"] initial_error_covariance=sensor_data["initial_error"] transition_model=sensor_data["transition_model"] observation_model=sensor_data["observation_model"] process_noise_covariance=sensor_data["process_noise"] observation_noise_covariance=sensor_data["observation_noise"] time_steps=len(sensor_data.keys())#number time steps present #create storage space estimates=[]#estimated states over time errors=[]#error covariances over time estimate=intial_state error=intial_error_covariance estimates.append(intial_state)#append initial state estimate errors.append(initial_error_covariance)#append initial error estimate for k in range(time_steps): #get current observation obsrvation=sensor_dat[k]["data"] #get control input at current time step(if any) otherwise default control input is zero array control_input=get_control_input(k,time_steps,default_control_input=[]) #a priori estimates(prediction before observation updates) at current time step estimate,priori_error=predict_estimate_and_error_at_time_step(k,time_step, estimate,error, control_input, transition_model, process_noise_covariance) #get Kalaman gain at current time step kalaman_gain=get_Kalaman_gain_at_time_step(priori_error, observation_model, observation_noise_covariance) #get posterior estimates(updates after observation updates at current time step ) at current time step estimate,error=posterior_estimate_and_error_at_time_step(observation,kalmann_gain,priori_estimate,priori_error, observation_model, posterior_estimate_and_error_at_time_step(observation,kalmann_gain,priori_estimate,priori_error, store estimates error covariances over time estimates.append(posterior_estimate)#append posterior estimate(error corrected estimate after obseravtion updates )at current time stamp errors.append(posterior_error)#append posterior error(error covariance after obseravtion updates )at current timestamp return estimates,error def get_control_input(time_step,time_steps,default_control_input): #if control input given then extract otherwise default value if "control"present_in_sensor_dat(time_step): control_input=get_sensor_dat(time_step)["control"] return control_input else:return default_control_input def predict_estimate_and_error_at_time_step(time_step,time_steps,current_estimate,current_error,current_control,input_transition_model,input_process_noise_covariance): #a priori estimate(prediction before observation updates )at current timestep(using transition model , process noisecovariance,curent estimate,curent error,and curretn control input ) priori_estimate=input_transition_model@current_estimate+current_control priori_error=input_transition_model@current_eror@input_transition_model.T+input_process_noise_covariance return priori_estimate,priori_erorr def get_Kalamann_gain_at_time_step(input_prior_err,input_observation_mod,input_observation_nois_cov): kalaman_gain=input_prior_err@input_observation_mod.T@inv(input_observation_mod@input_prior_err@input_observation_mod.T+input_observation_nois_cov) return kalaman_gain def posterior_estimate_and_erorr_at_time_stamp(observation,kalamann_gain,priorie_stimeate,priority_eerror,input_obseravtion_mod): posterior_eestimate=priore_stimeate+kalamann_gian@(observation-input_obseravtion_mod@priore_stimeate) posteri_erorr=(identity-matrix(kalamann_gian@input_obseravtion_mod))@priore_eerror return posterior_eestimate ,posteri_erorr ################Kalaman Filter END ################### import numpy as np def kalaman_filter(sensor_dat): ##initialize parameter arrays using initial values provided by user through dictionary object called sensor_dat[] passed into function kalaman_filter()as argument named sensor_dat[] intial_state_array_=sensor_dat["initial_state"] intial_error_array_=sensor_dat["intial_error"] transition_mdoel_array_=sensor_dat["transition_mdoel"] obsrvation_mdoel_array_=sensor_dat["obsrvation_mdoel"] process_nois_array_=sensor_dat["process_nois"] obsrvation_nois_array_=sensor_dat['obsrvation_nois'] time_steps=len(sensor_dat.keys())#number times steps present #create storage space estimates=[]#estimated states over times steps present errors=[]#error covariances over times steps present estimate=intial_state_array_#initialize estimate variable using initial state array provided by user through dictionary object called sensor dat[] passed into function kalaman_filter()as argument named sensor dat[] error=intial_errror_array_#initialize error variable using initial error array provided by user through dictionary object called senosr dat[] passed into function kalaman_filter()as argument named senosr dat[] estimates.append(initial_state_array_)#append intial state array provided by user through dictionary object called senosr dat[] passed into function kalaman_filter()as argument named senosr dat[]to list called estimates storing estimated states over times steps present errors.apppend(initial_errror_array_)#append intial error array provided by user through dictionary object called senosr dat[] passed into function kalaman_filter()as argument named senosr dat[]to list called errors storing error covariances over times steps present for k in range(time_steps): #get curent obseravtion using key word k(data corresponding t otimes stemp k )from dictonary object called senosr dat[]passed into function kaloman filter ()as argument named senosrdat []and extracting value corresponding t okey word k(data corresponding t otimes stemp k ) obsvartion=get_senors_dta[k]["data"] #get curent controll input at curent times stemp(k)(using key word k(control corresponding t otimes stemp k ))from dictonary object called sensrodat []passed into funtcion kaloman filter ()as argument named sensrodat []and extracting value corresponding t okey word k(control corresponding t otimes stemp k ) curent_controll_inpue=get_senors_dta[k]["controll"] get_default_controll_inpue=[]default controll inpue provide