Skip to main content
Главная страница » Football » Beyoglu Yeni Carsi Futbol Kulubu (Turkey)

Beyoglu Yeni Carsi FC: Squad, Achievements & Stats in Istanbul League

Overview / Introduction about the Team

Beyoglu Yeni Carsi Futbol Kulubu, commonly known as Beyoglu Yeni Carsi FC, is a prominent football team based in Istanbul, Turkey. Competing in the top-tier Turkish Süper Lig, the club was founded in 1925 and has since developed a reputation for its passionate fanbase and competitive spirit. The team plays its home matches at the historic Yeni Carsi Stadium.

Team History and Achievements

Throughout its history, Beyoglu Yeni Carsi FC has enjoyed several successful seasons. The club has clinched multiple league titles and cup victories, with notable achievements including winning the Turkish Süper Lig in 1943 and 1951. The team has consistently been a strong contender in domestic competitions and has participated in European tournaments on several occasions.

Current Squad and Key Players

The current squad features a blend of experienced veterans and promising young talents. Key players include:

  • Murat Demir – Striker (🎰), known for his sharp goal-scoring abilities.
  • Kaan Altin – Midfielder (💡), recognized for his vision and playmaking skills.
  • Efe Aydin – Defender (✅), renowned for his defensive solidity.

Team Playing Style and Tactics

Beyoglu Yeni Carsi FC typically employs a 4-3-3 formation, focusing on high pressing and quick transitions. The team’s strengths lie in their dynamic attacking play and solid defensive organization. However, they occasionally struggle with maintaining possession under pressure.

Interesting Facts and Unique Traits

The club is affectionately nicknamed “The Lions of Beyoglu,” reflecting their fierce competitiveness. They boast a dedicated fanbase known as “The Beyoglu Brigade.” A longstanding rivalry with Galatasaray adds an extra layer of excitement to their matches.

Lists & Rankings of Players, Stats, or Performance Metrics

  • Murat Demir: Top goalscorer with 15 goals this season (✅).
  • Kaan Altin: Leading assists provider with 10 assists (💡).
  • Efe Aydin: Fewest goals conceded when starting (❌).

Comparisons with Other Teams in the League or Division

Beyoglu Yeni Carsi FC often finds itself compared to rivals like Fenerbahce and Galatasaray due to their similar league standings. While they share competitive ambitions, Beyoglu’s tactical flexibility often gives them an edge in crucial matches.

Case Studies or Notable Matches

A breakthrough game for the club was their stunning 4-0 victory over Galatasaray in 2021, showcasing their attacking prowess. This match remains a highlight of recent seasons.

Tables Summarizing Team Stats, Recent Form, Head-to-Head Records, or Odds

</table

Tips & Recommendations for Analyzing the Team or Betting Insights 💡 Advice Blocks 📊 Betting Analysis 💡 Tips 💡 Recommendations 💡 Insights 📊 Betting Strategy 📊 Insights 📊 Analysis Tips 💡 Recommendations 💡 Betting Strategies 💡 Analysis Tips 📊 Insights 💡 Tips 💡 Recommendations 📊 Betting Strategies 📊 Insights 📊 Analysis Tips

To maximize your betting potential on Beyoglu Yeni Carsi FC:

  • Analyze head-to-head records against upcoming opponents to identify trends.
  • Closely monitor player form and injury reports before placing bets.
  • Leverage odds offered by Betwhale to find value bets based on statistical analysis.

Famous Quotes About the Team by Experts 👏 Expert Opinions 👏 Expert Quotes 👏 Expert Comments 👏 Expert Reviews 👏 Expert Opinions 👏 Expert Statements 👏 Famous Quotes About the Team by Experts

“Beyoglu Yeni Carsi FC’s resilience on the pitch is unmatched,” says renowned sports analyst Mehmet Ozdemir.

The Pros & Cons of the Team’s Current Form or Performance ✅Pros ❌Cons Pros Cons Pros Cons Pros Cons Pros Cons Pros Cons Pros Cons Pros Cons Pros Cons Pros Cons

  • Proms: ✅✅✅✅✅ Strong attacking lineup capable of turning games around quickly.
                    🔴 High pressing tactics disrupt opponent strategies effectively.








                         #Cons: ❌❌❌❌❌ Occasional lapses in concentration lead to costly errors.
                    Struggles with maintaining possession under intense pressure.
                    None:
                    self.cos_sim_default_eps_zero_eps_zero_grads_none_shape_one_dim_x_y_same_size_y_first_dim_batch_size_y_second_dim_features_x_same_as_y_but_last_dim_is_labels_shape_two_dim_x_y_same_size_y_first_dim_batch_size_y_second_dim_features_x_same_as_y_but_last_dim_is_labels_shape_three_dim_x_y_same_size_y_first_dim_batch_size_y_second_dim_num_channels_or_height_or_width_or_depth_x_same_as_y_but_last_dim_is_labels_shape_one_and_two_and_three_plus_n_dims_x_same_as_y_but_last_dim_is_labels_shape_one_and_two_and_three_plus_n_dims_labelled_pairwise_loss_all_pairs_with_equal_number_of_classes_in_each_batch_labelled_pairwise_loss_all_pairs_with_different_number_of_classes_in_each_batch_unlabelled_pairwise_loss_all_pairs_with_equal_number_of_classes_in_each_batch_unlabelled_pairwise_loss_all_pairs_with_different_number_of_classes_in_each_batch_unlabelled_contrastive_loss_all_pairs_with_equal_number_of_classes_in_each_batch_unlabelled_contrastive_loss_all_pairs_with_different_number_of_classes_in_each_batch_unlabelled_contrastive_loss_with_multiple_negative_samples_per_positive_sample_all_pairs_with_equal_number_of_classes_in_each_batch_unlabelled_contrastive_loss_with_multiple_negative_samples_per_positive_sample_all_pairs_with_different_number_of_classes_in_each_batch_unlabelled_triplet_semihard_loss_all_pairs_with_equal_number_of_classes_in_each_batch_unlabelled_triplet_semihard_loss_all_pairs_with_different_number_of_classes_in_each_batch_unlabelled_triplet_ehard_n_hard_negatives_one_hundred_percent_sampling_rate_for_the_hardest_negative_sample_only_unlabelled_triplet_ehard_n_hard_negatives_five_percent_sampling_rate_for_the_hardest_negative_sample_only_labeled_contrastive_loss_labeled_pairwise_margin_ranking_loss_labeled_soft_margin_ranking_loss_labeled_soft_triple_margin_ranking_loss_labeled_multi_class_hinge_embedding_loss_softmax_classification_cross_entropy_softmax_classification_cross_entropy_without_temperature_softmax_classification_cross_entropy_without_temperature_weighted_by_class_frequency_inverse_sqrt_softmax_classification_cross_entropy_without_temperature_weighted_by_class_frequency_inverse_sqrt_softmax_classification_cross_entropy_without_temperature_weighted_by_class_frequency_log_uniform_softmax_classification_cross_entropy_weighted_by_class_frequency_log_uniform_softmax_classification_cross_entropy_weighted_by_class_frequency_log_uniform_sigmoid_binary_cross_entropy_sigmoid_binary_cross_entropy_weighted_by_class_frequency_log_uniform_sigmoid_binary_cross_entropy_weighted_by_class_frequency_log_uniform_multilabel_soft_margin_multilabel_soft_margin_weighted_by_class_frequency_log_uniform_multilabel_soft_margin_weighted_by_class_frequency_log_uniform_multiclass_hinge_embedding_multiclass_hinge_embedding_weighted_by_class_frequency_log_uniform_multiclass_hinge_embedding_weighted_by_class_frequency_log_uniform_centroid_losses_centroid_losses_centroid_losses_when_using_cosine_similarity_centroid_losses_when_using_cosine_similarity_when_providing_custom_centroids_criterion_for_autoencoder_reconstruction_error_mean_squared_error_mean_squared_error_when_providing_custom_reconstruction_targets_criterion_for_autoencoder_reconstruction_error_mean_absolute_error_mean_absolute_error_when_providing_custom_reconstruction_targets_criterion_for_autoencoder_reconstruction_error_mean_absolute_percentage_error_mean_absolute_percentage_error_when_providing_custom_reconstruction_targets_criterion_for_autoencoder_reconstruction_error_root_mean_squared_error_root_mean_squared_error_when_providing_custom_reconstruction_targets_criterion_for_autoencoder_reconstruction_error_root_mean_squared_logarithmic_error_root_mean_squared_logarithmic_error_when_providing_custom_reconstruction_targets_criterion_for_autoencoder_reconstruction_error_symmetric_mse_symmetric_mse_when_providing_custom_reconstruction_targets_symmetric_mae_symmetric_mae_when_providing_custom_reconstruction_targets_symmetric_map_symmetric_map_when_providing_custom_reconstruction_targets_symmetric_rmse_symmetric_rmse_when_providing_custom_reconstruction_targets_symmetric_rmsle_symmetric_rmsle_when_providing_custom_reconstruction_targets_bce_bce_logits_bce_logits_weights_mask_bce_logits_weights_mask_float_tensor_float_tensor_float_tensor_float_tensor_int_tensor_int_tensor_int_tensor_int_tensor_int_tensor_int_tensor_int_tensor_float_tensor_float_tensor_float_tensor_float_tensor_bool_tensor_bool_tensor_bool_tensor_bool_tensor_bool__tensor__tensor__tensor__tensor__tensor__tensor__tensor__tensor__tensor__tensor__tensor___eps_cos_sim_eps_default_eps_zero_grads_none_grads_none_shape_one_labelled_pairwise_labelled_pairwise_labelled_contrastive_labeled_contrastive_labeled_triplet_semihard_labeled_triplet_semihard_unlabelled_triplet_ehard_n_hard_negatives_five_percent_sampling_rate_unlabelled_triplet_ehard_n_hard_negatives_five_percent_sampling_rate_softmax_classification_cross_entropy_softmax_classification_cross_entropy_without_temperature_softmax_classification_cross_entropy_without_temperature_weighted_by_class_frequency_inverse_sqrt_softmax_classification_cross_entropy_without_temperature_weighted_by_class_frequency_inverse_sqrt_softmax_classification_cross_entropy_without_temperature_weighted_by_class_frequency_log_uniform_softmax_classification_cross_entropy_weighted_by_class_frequency_log_uniform_sigmoid_binary_crossentropy_sigmoid_binary_crossentropy_weights_mask_sigmoid_binary_crossentropy_weights_mask_multilabel_softmargin_multilabel_softmargin_weights_mask_multilabel_softmargin_weights_mask_multiclass_hinge_embedding_multiclass_hinge_embedding_weights_mask_multiclass_hinge_embedding_weights_mask_centroid_losses_centroid_losses_centroid_losses_cosine_similarity_cosine_similarity_centroid_losses_cosine_similarity_centroid_losses_cosine_similarity_ae_rec_err_mse_ae_rec_err_mse_ae_rec_err_mse_ae_rec_err_target_ae_rec_err_target_ae_rec_err_mae_ae_rec_err_mae_ae_rec_err_target_ae_rec_err_target_ae_rec_err_map_ae_rec_err_map_ae_rec_err_target_ae_rec_err_target_ae_rec_err_rmse_ae_rec_err_rmse_ae_rec_err_target_ae_rec_err_target_ae_rec_err_rmsle_ae_rec_err_rmsle_ae_rec_err_target_ae_rec_err_target_sympm_sympm_sympm_sympm_sympm_sympm_sympm_sympm_sympm_sympm_smclsxent_smclsxent_smclsxent_smclsxent_smclsxent_smclsxent_smclsxent_smclsxent_wt_inv_sqrt_wt_inv_sqrt_wt_ln_wt_ln_wt_ln_wt_ln_sigmbce_sigmbce_sigmbce_sigmbce_sigmbce_sigmbce_sigmbce_sigmbce_wtsmask_sigmbce_wtsmask_sigmbce_wtsmask_mlsl_mlsl_mlsl_mlsl_mlsl_mlsl_mlsl_mlsl_mcml_mcml_mcml_mcml_mcml_mcml_mcml_mcml_ctrlss_ctrlss_ctrlss_ctrlss_ctrlss_ctrlss_ctrlss_ctrlss_cs_cs_cs_cs_cs_cs_cs_cs_cs_ccsm_ccsm_ccsm_ccsm_ccsm_ccsm_ccsm_ccsm_arccos_arccos_arccos_arccos_arccos_arccos_arccos_arccos_acs_acs_acs_acs_acs_acs_acs_acs_aaee_aaee_aaee_aaee_aaee_aaee_aaee_aaee_areta_areta_areta_areta_areta_areta_areta_areta_amre_amre_amre_amre_amre_amre_amre_amre_atpe_atpe_atpe_atpe_atpe_atpe_atpe_atpe_saepmaesaesmaesaesmaesaesmaesaesmaesaesaepmaesaesmaesaesmaesaesmaesaesamare_maere_maere_maere_maere_maere_maere_maere_maere_armrm_armrm_armrm_armrm_armrm_armrm_armrm_armrm_arrlm_arrlm_arrlm_arrlm_arrlm_arrlm_arrlm_arrlm_apmm_apmm_apmm_apmm_apmm_apmm_apmm_apmm_slxsxl_slxsxl_slxsxl_slxsxl_slxsxl_slxsxl_slxsxl_slxsxl_ilnsln_ilnsln_ilnsln_ilnsln_ilnsln_ilnsln_ilnsln_ilnsln_iwlswl_iwlswl_iwlswl_iwlswl_iwlswl_iwlswl_iwlswl_ibmsbm_ibmsbm_ibmsbm_ibmsbm_ibmsbm_ibmsbm_ibmsbm_iccsic_iccsic_iccsic_iccsic_iccsic_iccsic_iccsic_icbsib_icbsib_icbsib_icbsib_icbsib_icbsib_icbsib_imtsim_imtsim_imtsim_imtsim_imtsim_imtsim_imtsim_ixgixg_ixgixg_ixgixg_ixgixg_ixgixg_ixgixg_ixbixb_ixbixb_ixbixb_ixbixb_ixbixb_ixbixb_ipipip_ipipip_ipipip_ipipip_ipipip_ipipip_ipipip_irrirr_irrirr_irrirr_irrirr_irrirr_irrirr_irrirr_itetit_itetit_itetit_itetit_itetit_itetit_itetit_ioeosio_eosoio_eosoio_eosoio_eosoio_eosoio_eosoio_ieoeie_ieoeie_ieoeie_ieoeie_ieoeie_ieoeie_ioeosio_eososiosiosiosiosiosiosiosiosiosiosioso_so_so_so_so_so_so_so_so_so_se_se_se_se_se_se_se_se_si_si_si_si_si_si_si_si_sr_sr_sr_sr_sr_sr_sr_sr_sq_sq_sq_sq_sq_sq_sq_sq_sb_sb_sb_sb_sb_sb_sb_sb_sg_sg_sg_sg_sg_sg_sg_sg_sk_sk_sk_sk_sk_sk_sk_sk_sn_sn_sn_sn_sn_sn_sn_sn_sp_sp_sp_sp_sp_sp_sp_sp_st_st_st_st_st_st_st_su_su_su_su_su_su_su_su_sw_sw_sw_sw_sw_sw_sw_sw_ta_ta_ta_ta_ta_ta_ta_ta_tb_tb_tb_tb_tb_tb_tb_tb_tc_tc_tc_tc_tc_tc_tc_tc_td_td_td_td_td_td_td_td_te_te_te_te_te_te_te_te_tf_tf_tf_tf_tf_tf_tf_tf_tg_tg_tg_tg_tg_tg_tg_tg_tg_th_th_th_th_th_th_th_th_ti_ti_ti_ti_ti_ti_ti_ti_tj_tj_tj_tj_tj_tj_tj_tj_tl_tl_tl_tl_tl_tl_tl_tl_tm_tm_tm_tm_tm_tm_tm_tm_tp_tp_tp_tp_tp_tp_tp_tp_tr_tr_tr_tr_tr_tr_tr_tr_ts_ts_ts_ts_ts_ts_ts_ts_tt_tt_tt_tt_tt_tt_tt_tt_tv_tv_tv_tv_tv_tv_tv_tw_tw_tw_tw_tw_tw_tw_tw_ty_ty_ty_ty_ty_ty_ty_ty_uu_uu_uu_uu_uu_uu_uu_uu_vv_vv_vv_vv_vv_vv_vv_vv_xx_xx_xx_xx_xx_xx_xx_xx_xy_xy_xy_xy_xy_xy_xy_xy_xz_xz_xz_xz_xz_xz_xz_zz_zz_zz_zz_zz_zz_zz_zz)

                    ***** Tag Data *****
                    ID: 4
                    description: Setup method initializing numerous variables used throughout different
                    tests related to cosine similarity calculations.
                    start line: 11
                    end line: 11
                    dependencies:
                    – type: Class
                    name: TestDistances
                    start line: 13
                    end line: 13
                    context description: This setup method initializes many variables used across various
                    tests within `TestDistances`. It ensures consistency across tests but can be quite
                    complex due to numerous initializations.
                    algorithmic depth: 4
                    algorithmic depth external: N
                    obscurity: 4
                    advanced coding concepts: 3
                    interesting for students: 4
                    self contained: N

                    ************
                    ## Challenging aspects

                    ### Challenging aspects in above code:
                    The provided snippet imports several distance metrics from `pytorch_metric_learning.distances`. Here are some challenging aspects:

                    * **Understanding Different Distance Metrics**: Each imported distance metric (`CosineSimilarity`, `LpDistance`, `MinkowskiDistance`, `NormDistance`) operates differently based on mathematical principles which require deep understanding.
                    * **Parameter Sensitivity**: Each metric might have specific parameters that influence its behavior significantly; handling these parameters correctly requires careful attention.
                    * **Integration Complexity**: Integrating these metrics into a consistent testing framework where each metric is tested uniformly yet accurately can be challenging.
                    * **Edge Cases Handling**: Ensuring robustness against edge cases such as zero vectors or very large/small values can be non-trivial.

                    ### Extension:
                    Here are some ways these aspects can be extended:

                    * **Dynamic Metric Selection**: Allow dynamic selection of metrics during runtime based on certain conditions or configurations.
                    * **Custom Distance Metrics**: Enable users to define custom distance metrics which can be plugged into this framework seamlessly.
                    * **Parameter Tunability**: Implement functionality where parameters for each metric can be tuned dynamically based on input data characteristics.

                    ## Exercise

                    ### Problem Statement:
                    You are tasked with extending a testing framework for various distance metrics used within machine learning models implemented using PyTorch Metric Learning library.

                    **Requirements**:

                    #### Part A:
                    Expand [SNIPPET] by creating an advanced testing suite within `TestDistances` class which includes:

                    * Dynamic selection mechanism allowing any combination of `CosineSimilarity`, `LpDistance`, `MinkowskiDistance`, `NormDistance` during runtime.
                    * Ability to add custom-defined distance metrics into this suite without altering existing code structure significantly.

                    #### Part B:
                    Implement additional functionality that allows tuning parameters dynamically based on input data characteristics such as dimensionality or value range.

                    #### Constraints:
                    – Ensure backward compatibility so existing tests do not break upon integration of new functionalities.
                    – Handle edge cases such as zero vectors gracefully without causing exceptions.

                    ## Solution

                    ### Part A Solution:

                    python
                    import unittest
                    from pytorch_metric_learning.distances import CosineSimilarity, LpDistance, MinkowskiDistance, NormDistance

                    class TestDistances(unittest.TestCase):

                    @classmethod
                    def setUpClass(cls):
                    cls.distance_metrics_dict = {
                    ‘cosine’: CosineSimilarity(),
                    ‘lp’: LpDistance(),
                    ‘minkowski’: Minkowski Distance(),
                    ‘norm’: Norm Distance()
                    }

                    @classmethod
                    def register_metric(cls, name:str, metric):
                    cls.distance_metrics_dict[name] = metric

                    # Example usage:
                    # TestDistances.register_metric(‘custom’, CustomMetric())

                    ### Part B Solution:

                    python

                    class DynamicParameterTuner:

                    @staticmethod
                    def tune_parameters(metric_name:str):

                    if metric_name not in TestDistances.distance_metrics_dict.keys():
                    raise ValueError(f”Metric {metric_name} not registered”)

                    metric_instance = TestDistances.distance_metrics_dict.get(metric_name)

                    if isinstance(metric_instance, CosineSimilarity):
                    return {‘epsilon’: max(0.001 * len(metric_instance.input_data), min_value)}

                    elif isinstance(metric_instance,(Lp Distance,M ink ows k i Dist ance)):
                    return {‘ p ‘: min(max(len(metric_instance.input_data) //10000 + min_value)}

                    # Usage example inside test cases within TestDistances class:
                    def test_dynamic_param_selection(self):

                    for name,metric_instacein self.distance_metrics_dict.items():

                    params=tune_parameters(name)

                    self.assertGreaterEqual(params[‘epsilon’],min_value) if name==’cosine’ else self.assertGreaterEqual(params[‘ p’],min_value)

                    ## Follow-up exercise

                    ### Problem Statement:
                    Building upon your implementation from above exercises,

                    #### Part C:
                    Enhance your solution to support parallel execution where multiple metrics are tested simultaneously using multi-threading/multiprocessing techniques ensuring thread-safety.

                    #### Part D:
                    Introduce logging mechanisms that record detailed logs about which metrics were selected dynamically during runtime along with their parameter settings.

                    ## Solution:

                    ### Part C Solution:

                    python

                    import threading

                    class ThreadSafeTestRunner(Thread):

                    def __init__(self,test_case_name,params_list):

                    super().__init__()

                    self.test_case_name=test_case_name

                    self.params_list=params_list

                    def run(self):

                    test_method=getattr(TestDistances,’test_’+test_case_name)

                    for params in self.params_list:test_method(**params)

                    # Example usage inside test case method within TestDistances class:

                    def test_parallel_execution(self):

                    threads=[]

                    for name,param_setin enumerate(params_sets):

                    thread_runner=ThreadSafeTestRunner(f’dynamic_param_selection_{name}’,param_set)

                    thread_runner.start()

                    threads.append(thread_runner)

                    for threadin threads: thread.join()

                    ### Part D Solution:

                    python

                    import logging

                    logging.basicConfig(level=logging.INFO,filename=’metrics_test.log’)

                    class LoggingTuner(DynamicParameterTuner):

                    @staticmethod

                    def tune_parameters(metric_name:str,**kwargs):

                    params=tune_parameters.__func__(DynamicParameterTuner,metric_name,**kwargs)

                    logging.info(f’Metric:{metric_name}, Parameters:{params}’)return params

                    # Usage example inside test case methods within TestDistances class would remain similar but will now log details automatically.

                    function GetEntity(eid)
                    {
                    return Entities[eid];
                    }

                    function GetEntityByPos(x,y,z)
                    {
                    for(var i=Entities.length;i–;)
                    {
                    var e;
                    if((
                    e=(Entities[i])&&
                    (
                    e.x==x&&
                    e.y==y&&
                    e.z==z
                    )
                    ))
                    {
                    return e;
                    }

                    }

                    return null;
                    }

                    function Entity()
                    {
                    this.eid=-999;
                    this.x=-999;
                    this.y=-999;
                    this.z=-999;

                    this.type=null;

                    this.speedX=null;
                    this.speedY=null;
                    this.speedZ=null;

                    this.hp=null;

                    this.alive=true;

                    this.buffList=[];

                    }

                    function EntityPlayer(eid,x,y,z,hair,clothes,color,bodycolor,speedX,speedY,speedZ,hunger,maxhp,hungermax)
                    {
                    Entity.call(this);

                    this.eid=eid;

                    this.x=x||null;this.y=y||null;this.z=z||null;

                    this.hair=headhair=clothes=headclothes=color=headcolor=this.hair=clothes=this.clothes=color=this.color=this.bodycolor=headbodycolor=this.bodycolor=null;

                    if(hair!=null)this.hair=headhair=hair;if(clothes!=null)this.clothes=headclothes=clothes;if(color!=null)this.color=headcolor=color;if(bodycolor!=null)this.bodycolor=headbodycolor=bodycolor;

                    if(speedX!=null)this.speedX=speedX;if(speedY!=null)this.speedY=speedY;if(speedZ!=null)this.speedZ=speedZ;

                    if(hunger!=null)this.hunger=hunger;if(maxhp!=null)this.maxhp=maxhp;if(hungermax!=null)this.hungermax=hungermax;

                    }

                    EntityPlayer.prototype=new Entity();
                    EntityPlayer.prototype.constructor=function(){return EntityPlayer;};

                    function EntityItem(eid,x,y,z,type,count)
                    {
                    Entity.call(this);

                    this.eid=eid;

                    this.x=x||null;this.y=y||null;this.z=z||null;

                    if(type>=ItemType.length)return;//Invalid item type

                    if(count==undefined || countthis.maxStack())count=this.maxStack();//If count > maxStack set it equal maxStack

                    var itemType={type:type,count:this.count=count};
                    var itemMaxStack=itemType.maxStack();

                    if(itemType.count>this.maxStack())itemType.count=itemMaxStack;//If count > maxStack set it equal maxStack

                    itemType.stackSize=itemMaxStack;//Set stack size

                    itemType.name=itemType.name?itemType.name:”Unknown Item”;//Set default item name

                    itemType.value=itemType.value?itemType.value:”Unknown Item”;//Set default item value

                    itemType.icon=itemType.icon?itemType.icon:”Unknown Item”;//Set default item icon

                    itemType.solid=itemSolid=false;//Items are not solid by default

                    itemType.burnTime=-999;//Default burn time

                    itemType.canBeBurnedByFire=false;//Items cannot burn unless specified

                    itemType.burnTimePerTick=-999;//Default burn time per tick

                    itemType.isFood=false;//Items cannot be eaten unless specified

                    itemType.foodHealAmount=-999;//Default heal amount when eaten

                    itemType.foodSaturationAmount=-999;//Default saturation amount when eaten

                    itemType.foodHungerRestoreAmount=-999;//Default hunger restore amount when eaten

                    Item[itemId]=itemItem={type:itemId,count:this.count=count};//Create item object

                    Item[itemId].maxStack=itemMaxStack;//Set stack size

                    Item[itemId].name=itemName=itemName?itemName:”Unknown Item”;//Set default item name

                    Item[itemId].value=itemValue=itemValue?itemValue:”Unknown Item”;//Set default item value

                    Item[itemId].icon=itemIcon=itemIcon?itemIcon:”Unknown Item”;//Set default item icon

                    Item[itemId].solid=isSolid=false;//Items are not solid by default

                    Item[itemId].burnTime=isBurnTime=-999;//Default burn time

                    Item[itemId].canBeBurnedByFire=isCanBeBurnedByFire=false;//Items cannot burn unless specified

                    Item[itemId].burnTimePerTick=isBurnTimePerTick=-999;//Default burn time per tick

                    Item[itemId].isFood=isIsFood=false;//Items cannot be eaten unless specified

                    Item[itemId].foodHealAmount=isFoodHealAmount=-999;//Default heal amount when eaten

                    Item[itemId].foodSaturationAmount=isFoodSaturationAmount=-999;//Default saturation amount when eaten

                    Item[itemId].foodHungerRestoreAmount=isFoodHungerRestoreAmount=-999;//Default hunger restore amount when eaten

                    }

                    EntityItem.prototype=new Entity();
                    EntityItem.prototype.constructor=function(){return EntityItem;};

                    function EntityMob(eid,x,y,z,type,name,color,size,hurtTimer,maxhp,maxflyingrange,flyingrange,speedX,speedY,speedZ,hunger,hungermax)
                    {
                    Entity.call(this);

                    var mob=Mob[mobIndex];
                    mobIndex++;

                    mob.eid=eid;
                    mob.type=name?name:mob.type||”Unknown Mob”;

                    mob.x=x||mob.x||mob.spawnPointX;mob.y=y||mob.y||mob.spawnPointY;mob.z=z||mob.z||mob.spawnPointZ;

                    mob.color=color|mobsColor=mobsColor||(255<<16)|(255<<8)|255;

                    mob.size=size|mobsSize=mobsSize?size:mobsSize|32;

                    mob.hurtTimer=hurtTimer|mobsHurtTimer=mobsHurtTimer|hurtTimer|mobsHurtTimer|30;

                    mob.maxhp=maxhp|mobsMaxHp=mobsMaxHp|maxhp|mobsMaxHp|100;

                    mob.flyingRange=flyingrange|mobsFlyingRange=mobsFlyingRange?flyingrange:mobsFlyingRange|128;

                    mob.maxFlyingRange=maxflyingrange|mobsMaxFlyingRange=mobsMaxFlyingRange|maxflyingrange|mobsMaxFlyingRange|128;

                    if(speedX)speedX|=speedY|=speedZ|=mob.speedSpeed=mob.speedSpeed|=10000000;

                    speedX?s.mob.speedSpeed=s.mob.speedSpeed=s.mob.speedSpeed=s.mob.speedSpeed=s.mob.speedSpeed:s.mob.speedSpeed:s.mob.speedSpeed:s.mob.speedSpeed:s.mob.speedSpeed:s.mob.speedSpeed:moves.moving=random()*20000000-10000000;

                    speedY?s.mob.speedSpeed=s.mob.speedSpeed=s.mob.speedSpeed=s.mob.speedSpeed:s.mob.speedSpeed:s.movemove.move.move.move.move.moves.random()*20000000-10000000;

                    speedZ?s.movemove.moving.moving.moving.moving.moving.random()*20000000-10000000;

                    moves.hungers=movesHungers=movesHungers|hunger|hungermovesHungers|hungermovesHungers|20;

                    hungersmovesHungers.movesHungers.movesHungers.movesHungers.movesHungers.movesHungers.movesMovesMovesMovesMovesMovesMovesMovesMovesMovesMoves|hungermoveshungermoves|hungermoves|hungermovesmovesmovesmovemovemovemovemovemovemovemovemovesmovesmovemovemovemove|hungrermovesmovesmovemovemovemovemoveMoveMoveMoveMoveMoveMoveMoveMoveMovemoveMOVEMOVEMOVEMOVEMOVEMOVEMOVEMOVEMOVEMOVEMOVENew movesmovesnew movemovemovemovemovemovemovemovemove

                    hungermax=maxhungermax=maxhungermax|maxhungermax|maxhungermax|maxhungermax|maxhungermax|maxhungermax|maxhungermax|maxhungermax|80;

                    }

                    EntityMob.prototype=new Entity();
                    EntityMob.prototype.constructor=function(){return EntityMob;};

                    function GetNextAvailableEID()
                    {
                    for(var i=EIDs.length;i–;)//Loop through EIDs backwards
                    {

                    var eid=EIDs[i];//Get EID from array

                    if(!Entities[eid])//If EID does not exist then return it
                    return eid;

                    for(var j=i;j–;)//Loop through EIDs backwards again starting at i
                    {
                    var eid=EIDs[j];//Get EID from array
                    EIDs.splice(j

Statistic Last Season This Season
Total Goals Scored 45 52
Total Goals Conceded 38 36
Last Five Matches Form (W/D/L) L-W-W-D-L