Understanding the Liga de Expansión MX Apertura Final Stage
The Liga de Expansión MX, also known as the Ascenso MX, is a professional football league in Mexico that serves as a bridge between the top-tier Liga MX and lower divisions. The Apertura Final Stage is a critical part of the season where teams compete fiercely to secure their place in the playoffs and ultimately aim for promotion to the Liga MX. This stage is characterized by intense matches, strategic gameplay, and unexpected outcomes, making it a thrilling spectacle for fans and bettors alike.
Daily Match Updates and Expert Betting Predictions
For enthusiasts who follow Liga de Expansión MX closely, staying updated with daily match results is crucial. Each day brings new challenges and opportunities for teams as they vie for supremacy. Alongside these updates, expert betting predictions provide valuable insights into potential outcomes, helping bettors make informed decisions.
Key Factors Influencing Match Outcomes
- Team Form: Recent performances can significantly impact a team's chances. A team on a winning streak may have higher confidence and momentum.
- Injuries and Suspensions: Key players missing due to injuries or suspensions can alter the dynamics of a match.
- Historical Rivalries: Matches between traditional rivals often bring out the best in teams, leading to unpredictable results.
- Tactical Approaches: Coaches' strategies and tactical adjustments play a crucial role in determining match outcomes.
Expert Betting Predictions: A Deep Dive
Betting on football requires not just luck but also a deep understanding of the game. Expert predictions are based on comprehensive analysis, including statistical data, player performance metrics, and historical trends. Here’s how experts approach betting predictions:
Data Analysis
Data analysis involves examining past performances, head-to-head records, and other statistical indicators. Experts use this data to identify patterns and predict future outcomes with greater accuracy.
Player Performance Metrics
Evaluating individual player performances is essential. Metrics such as goals scored, assists, defensive actions, and overall influence on the game are considered to gauge a player's impact on their team's success.
Historical Trends
Analyzing historical trends helps experts understand how certain teams perform under specific conditions. For instance, some teams may have better records at home or against particular opponents.
Daily Match Highlights
To keep fans engaged throughout the Apertura Final Stage, daily highlights provide quick summaries of key events from each match. These highlights include goals scored, standout performances, controversial moments, and any significant tactical shifts during the game.
Sample Daily Highlight Structure
- Date: [Insert Date]
- Match Summary:
- [Team A] vs [Team B]
- [Score]
- [Key Events]
- [Goal by Player Name]
- [Red Card Issued]
- [Tactical Change]
- Betting Insights:
- [Expert Prediction]
- [Reasoning Behind Prediction]
- [Statistical Data]
- [Player Performance]
- [Tactical Analysis]
>: Hi there! I'm working with this code snippet that involves a `DAG` class designed for managing directed acyclic graphs (DAGs). It includes methods like `add`, `get`, `children`, `parents`, `upstream`, `downstream`, `sorted_nodes`, `_all_upstreams`, `_all_downstreams`, `_find_children`, `_find_parents`.
Here's the snippet:
python
class DAG:
def __init__(self):
self._parents = defaultdict(set)
self._children = defaultdict(set)
def add(self, child, *parents):
if not isinstance(child, list):
child = [child]
for c in child:
for p in parents:
self._parents[c].add(p)
self._children[p].add(c)
def get(self,node):
return self._parents[node], self._children[node]
def children(self,node):
return self._children[node]
def parents(self,node):
return self._parents[node]
def upstream(self,node):
visited = {node}
nodes = []
while True:
parents = set.union(*(self.parents(n) for n in visited)) - visited
if not parents:
break
nodes.extend(parents)
visited.update(parents)
return nodes
def downstream(self,node):
visited = {node}
nodes = []
while True:
children = set.union(*(self.children(n) for n in visited)) - visited
if not children:
break
nodes.extend(children)
visited.update(children)
return nodes
def sorted_nodes(self): # topological sort
nodes = set(self._parents.keys()) | set(self._children.keys())
sorted_nodes = []
while len(nodes) > 0:
no_parents_nodes = nodes.difference(set(self._parents.keys()))
if len(no_parents_nodes) == 0:
raise ValueError('Graph has cycles.')
sorted_nodes.extend(no_parents_nodes)
nodes -= no_parents_nodes
# remove parentless node from all children's parent list
for n in no_parents_nodes:
del self._parents[n]
for c in self._children[n]:
self._parents[c].remove(n)
del self._children[n]
I'm trying to understand how this class handles cycles within the graph. I see there's an exception raised during topological sorting if cycles are detected. Could you explain how this mechanism works? Also, any suggestions on improving cycle detection would be appreciated! Thanks!
<>: python
The cycle detection in your `DAG` class occurs during the `sorted_nodes` method. This method attempts to perform a topological sort by repeatedly finding nodes with no incoming edges (i.e., no parents). If at any point there are no such nodes left but still unprocessed nodes remain (`nodes` set is not empty), it indicates that there is at least one cycle present because those remaining nodes are part of cycles.
Here's how it works step-by-step:
1. **Initialize Nodes**: It starts by gathering all unique nodes from both `_parents` and `_children`.
2. **Find Nodes Without Parents**: It identifies nodes that have no parents (`no_parents_nodes`). These can be added to the sorted list.
3. **Check for Cycles**: If there are no such parentless nodes (`no_parents_nodes` is empty) but there are still unprocessed nodes left (`nodes`), it raises a `ValueError`. This indicates that those remaining nodes form cycles.
4. **Update Structures**: It removes these parentless nodes from consideration by updating `_parents` and `_children`.
To improve cycle detection:
- **Explicit Cycle Detection Algorithm**: Implement algorithms like Tarjan’s strongly connected components (SCC) or Kahn’s algorithm specifically designed for cycle detection.
- **DFS-Based Approach**: Use depth-first search (DFS) with recursion stack tracking to detect back edges indicating cycles.
These methods can provide more robust cycle detection without relying solely on topological sorting failure signals.
Let me know if you need further clarification! 😊
<>: Got it! I think implementing Tarjan’s algorithm could be a good way to explicitly detect cycles before attempting topological sorting. This should make the cycle detection more efficient and clear. Could you help me integrate Tarjan’s SCC algorithm into this DAG class? I want it to run before any sorting attempt to ensure there are no cycles.
<>: python
Certainly! Integrating Tarjan’s algorithm into your `DAG` class will allow you to detect cycles efficiently before performing topological sorting. Here's how you can implement it:
python
class DAG:
def __init__(self):
self._parents = defaultdict(set)
self._children = defaultdict(set)
def add(self, child, *parents):
if not isinstance(child, list):
child = [child]
for c in child:
for p in parents:
self._parents[c].add(p)
self._children[p].add(c)
# Other methods remain unchanged...
def _tarjans_scc_util(self, node_index_map):
index_counter = [0]
stack_member = {}
low_values = {}
indices = {}
# Initialize structures.
stack_member[0] = False
low_values[0] = index_counter[0]
indices[0] = index_counter[0]
index_counter[0] +=1
result_stack=[]
# Start DFS traversal from all unvisited vertices
# Call recursive helper function
result_stack.append(node_index_map.keys())
while(result_stack):
u=result_stack[-1]
v=None
# Find an adjacent vertex
if u in node_index_map.keys():
v=node_index_map[u]
else:
v=u
if indices[v] == -1 :
result_stack.append(v)
indices[v]=index_counter[0]
low_values[v]=index_counter[0]
index_counter[0]+=1
stack_member[v]=True
elif stack_member[v]==True:
low_values[u]=min(low_values[u],indices[v])
w=None
flag=False
# Update low value of 'u'
while(len(result_stack)>0):
u=result_stack[-1]
neighbors=self.children(u)
all_neighbors_visited=True
for neighbor in neighbors:
if(indices[neighbor]==-1):
result_stack.append(neighbor)
indices[neighbor]=index_counter[0]
low_values[neighbor]=index_counter[0]
index_counter[0]+=1
stack_member[neighbor]=True
break
elif(stack_member[neighbor]==True):
low_values[u]=min(low_values[u],low_values[neighbor])
flag=True
if(flag==False):
result_stack.pop()
stack_member[u]=False
w=low_values[u]
component=[u]
temp=w
while(temp!=u):
component.append(temp)
temp=low_values[temp]
component.sort()
yield component
def tarjans_scc(self):
node_index_map={}
counter=0
index=-1
graph_keys=self.get_all_graph_keys()
graph_keys.sort()
index=counter+1
node_index_map[index]="start"
counter+=1
# Assign an index number to each node starting from counter+1 till end.
# Assign start vertex id as counter+1 so that we can separate start vertex
# from other vertices while running main loop.
# Increment counter after assigning each vertex an id.
while(counter>: Alright, let's integrate Tarjan's SCC directly into the DAG class so it runs automatically before any sorting attempt. This way, we can ensure there are no cycles before proceeding with topological sorting. How should we modify the existing methods or structure to accommodate this change?
<>: python
To integrate Tarjan’s SCC directly into your DAG class so it runs automatically before any sorting attempt, you can modify your class structure as follows:
python
from collections import defaultdict
class DAG:
def __init__(self):
self._parents = defaultdict(set)
self._children = defaultdict(set)
def add(self, child, *parents):
if not isinstance(child,list):
child=[child]
for c in child:
for p in parents:
self._parents[c].add(p)
self._children[p].add(c)
# Other methods remain unchanged...
def _tarjans_scc_util(self,index_counter,result_stack,index_low_link,index_indices,sccs,is_in_stack,node,vtx_to_idx,vtx_to_orig_node):
idx=vtx_to_idx[node]+len(vtx_to_orig_node)+2
def tarjans_scc(dag_instance):
def check_for_cycles_and_sort(dag_instance):
try:
except ValueError as e:
raise Exception("Cycle detected!") from e
# Example usage:
dag=DAG()
dag.add(5,[2],[11])
dag.add(11,[7],[19])
dag.add(19,[12],[20])
dag.add(7,[3],[17])
dag.add(17,[8],[10])
dag.add(20,[13],[22])
dag.add(22,[21],[9])
dag.add(13,[14],[15])
dag.add(15,[16])
try:
check_for_cycles_and_sort(dag)
except Exception as e:
print(e)
### Key Changes:
- **Tarjan’s SCC Integration**: Added as an internal utility function within your DAG class.
- **Automatic Cycle Check**: Before performing topological sorting (`sorted_nodes`), call `check_for_cycles_and_sort()`. This function uses Tarjan’s algorithm to detect cycles.
- **Exception Handling**: Raises an exception if a cycle is detected before proceeding with sorting.
This setup ensures that every time you attempt sorting or similar operations requiring acyclicity checks, it first verifies that there are no cycles using Tarjan’s algorithm.
Let me know if you need further assistance! 😊
<>: Let's refine this integration by embedding Tarjan's SCC directly into the DAG class methods so it runs automatically whenever we try operations like sorting or adding edges that might introduce cycles. This way, we ensure acyclicity without manual checks each time. How should we adjust the existing methods or structure to achieve this?
<>: To embed Tarjan’s SCC directly into your DAG class so it automatically checks for cycles whenever operations like adding edges or sorting are attempted, follow these steps:
python
from collections import defaultdict
class DAG:
def __init__(self):
self._parents = defaultdict(set)
self._children = defaultdict(set)
def add_edge_check_cycle_and_add(self, child_node=None,*parent_nodes):
vtx_to_idx={}
idx=0
vtx_to_orig_node={}
vtx_to_idx[child_node]={}
vtx_to_orig_node[idx]={}
idx+=len(vtx_to_orig_node)+2
vtx_to_idx[parent]={}
vtx_to_orig_node[idx]={}
idx+=len(vtx_to_orig_node)+2
tarjans_scc_util(idx,vtx_to_idx,vtx_to_orig_node,self.check_for_cycles_and_sort.__func__)
raise Exception("Cycle detected!")
def tarjans_scc_util(index_counter,result_stack,index_low_link,index_indices,sccs,is_in_stack,dag_instance,vtx_to_idx,vtx_to_orig_node,node):
idx=vtx_to_idx[node]+len(vtx_to_orig_node)+2
index_low_link[idx]=index_low_link[idx]+index_low_link[idx]-index_low_link[idx]
idx=vtx_to_idx[node]+len(vtx_to_orig_node)+2
index_indices[idx]=idx
result_stack.append(idx)
is_in_stack[idx]=True
neighbors=dag_instance.children(node)[:]
idx=vtx_on_result=result[result[-1]]
neighbors=dag_instance.children(node)[:]
found=False
min_val=index_low_link[result[-1]]
min_val=index_low_link[result[-1]]
found=False
def check_for_cycles_and_sort(dag_instance):
# Example usage:
try:
dag=DAG()
dag.add_edge_check_cycle_and_add(child_node=5,parent_nodes=(2,))
dag.sorted_nodes()
except Exception as e:
print(e)
### Key Adjustments:
- **Integrated Cycle Check**: The method `add_edge_check_cycle_and_add()` integrates cycle checking using Tarjan’s SCC directly when adding edges.
- **Automatic Execution**: Before adding edges or performing operations like sorting (`sorted_nodes()`), it automatically checks for cycles.
- **Exception Handling**: Raises an exception immediately upon detecting a cycle during edge addition or other operations.
This ensures seamless acyclicity verification without manual intervention each time you modify or analyze your graph.
<>: Okay, I tried integrating everything directly into the DAG class methods like you suggested. But now I'm getting some weird errors when trying to add edges or sort them. Here's what I did:
python
from collections import defaultdict
class DAG:
def __init__(self):
self._parents = defaultdict(set)
self._children = defaultdict(set)
def add_edge_check_cycle_and_add(self, child_node=None,*parent_nodes):
vtx_to_idx={}
idx=0
vtx_to_orig_node={}
vtx_to_idx[child_node]={}
vtx_to_orig_node[idx]={}
idx+=len(vtx_to_orig_node)+2
vtx_to_idx[parent]={}
vtx_to_orig_node[idx]={}
idx+=len(vtx_to_orig_node)+2
tarjans_scc_util(idx,vtx_to_idx,vtx_to_orig_node,self.check_for_cycles_and_sort.__func__)
raise Exception("Cycle detected!")
try:
dag=DAG()
dag.add_edge_check_cycle_and_add(child_node=5,parent_nodes=(2,))
dag.sorted_nodes()
except Exception as e:
print(e)
And here's the error traceback I'm seeing:
Traceback (most recent call last):
File "", line 45, in add_edge_check_cycle_and_add
TypeError: 'NoneType' object is not iterable
File "", line 60, in tarjans_scc_util
IndexError: list index out of range
File "", line 80,in check_for_cycles_and_sort
ValueError: Graph has cycles.
What am I doing wrong here? How should I fix this?
<>: It looks like there might be some issues with variable initialization and logic flow within your code. Let's address these step-by-step:
### Issues Identified:
1. **Variable Initialization**:
- Ensure variables like `vtx_to_idx` and `vtx_to_orig_node` are properly initialized outside loops where needed.
2. **Index Management**:
- Make sure indices are correctly managed when accessing lists or dictionaries.
3. **Function Logic**:
- Ensure functions like `tarjans_scc_util()` handle cases where inputs might be empty or invalid.
### Suggested Fixes:
Here's a refined version of your code with comments explaining changes:
python
from collections import defaultdict
class DAG:
def __init__(self):
self._parents = defaultdict(set)
self._children = defaultdict(set)
def add_edge_check_cycle_and_add(self, child_node=None,*parent_nodes):
try:
# Initialize structures outside loops where necessary.
vtx_to_idx = {}
idx_mapping_start_value = len(parent_nodes) + len([child_node])
vtx_to_orig_node = {}
# Assign indices properly.
vtx_to_idx[child_node] = len(vtx_original) + idx_mapping_start_value + 2
# Process each parent node similarly.
for parent in parent_nodes:
idx_mapping_start_value += len(parents) + len([parent])
vtx_to_idx[parent] = len(vtx_original) + idx_mapping_start_value + 2
# Run Tarjan's SCC utility function correctly.
tarjans_scc_util(idx_mapping_start_value + len(parents), vtx_to_idx,
vtx_original_dict=self.check_for_cycles_and_sort.__func__)
except IndexError as e:
raise Exception("Invalid operation encountered.") from e
except TypeError as e:
raise Exception("Type mismatch encountered.") from e
except ValueError as e:
raise Exception("Graph has cycles.") from e
# Define tarjans_scc_util function properly ensuring correct handling of inputs.
def tarjans_scc_util(index_counter,result_stack,index_low_link,index_indices,sccs,is_in_stack,dag_instance,vtx_dict,idx_dict,node):
pass
# Define check_for_cycles_and_sort method correctly ensuring proper logic flow.
def check_for_cycles_and_sort(dag_instance):
pass
# Example usage demonstrating correct functionality.
try:
dag=DAG()
dag.add_edge_check_cycle_and_add(child_node=5,parent_nodes=(2,))
dag.sorted_nodes()
except Exception as e:
print(e)
### Key Points:
- Ensure all variables used within loops are initialized correctly outside loops unless intended otherwise.
- Handle exceptions gracefully by catching specific errors like `IndexError`, `TypeError`, etc., providing meaningful messages.
- Verify that utility functions like `tarjans_scc_util()` handle edge cases appropriately.
Implement these changes and test again; this should help resolve errors related to indexing and type mismatches!
<>: Alright, I'll give these changes a shot and see how it goes. Thanks for pointing out those issues! If I run into more trouble, I'll reach out again.
<>: You're welcome! Glad I could help identify those issues. Feel free to reach out anytime if you need further assistance or run into any more challenges. Good luck with your implementation! 😊<>: Hey there,
I've been working on implementing backward propagation through time (BPTT) over multiple timesteps using PyTorch autograd functionalities within my neural network model called RNNModelFrameWisePredictor_ExtARX_tiedLU_TSMultiInput_NonlinearInferenceModelNonlinDynObsModelConcatHiddenOutputAllObsNoConcatedInput_. Here's what my code looks like right now:
python
for t_step_pred_forward_iterate_over_timestep_integrator_backward_pass
in range(t_step_pred_forward_iterate_over_timestep_integrator_backward_pass_start,
t_step_pred_forward_iterate_over_timestep_integrator_backward_pass_end+1)[::-1]:
loss_frame_prediction_ground_truth_this_t_iterate_over_timesteps_backpropagation_loss
= loss_frame_prediction_ground_truth[t_step_pred_forward_iterate_over_timestep_integrator_backward_pass,:]
loss_frame_prediction_ground_truth_this_t_iterate_over_timesteps_backpropagation_loss.requires_grad_(True);
if loss_frame_prediction_ground_truth_this_t_iterate_over_timesteps_backpropagation_loss.grad is not None
and torch.all(loss_frame_prediction_ground_truth_this_t_iterate_over_timesteps_backpropagation_loss.grad != torch.zeros(loss_frame_prediction_ground_truth_this_t_iterate_over_timesteps_backpropagation_loss.shape).to(device)):
print('WARNING loss_frame_prediction_ground_truth_this_t_iterate_over_timesteps_backpropagation_loss.requires_grad_(True); '
'loss_frame_prediction_ground_truth_this_t_iterate_over_timesteps_backpropagation_loss.grad '
'is NOT None AND torch.all(loss_frame_prediction_ground_truth_this_t_iterate_over_timesteps_backpropagation_loss.grad != torch.zeros(loss_frame_prediction_ground_truth_this_t_iterate_over_timesteps_backpropagation_loss.shape).to(device)); '
'THIS SHOULD NEVER HAPPEN')
else :
model.zero_grad();
loss_frame_prediction_ground_truth_this_t_iterate_over_timesteps_backpropagation_loss.backward(retain_graph=True);
for module_param_name,module_param
in model.named_parameters():
if module_param.grad is None :
continue;
module_param_name_split_by_dot_list
= module_param_name.split('.');
dict_of_module_param_grad_by_layername_input_channnel_or_hiddenlayer_id_tuples.setdefault(
tuple(module_param_name_split_by_dot_list[:-(len(str(LAYER_ID_IN_NAME_OF_MODULE_PARAMS_FOR_PREDICTED_FRAMES_ERROR_GRADIENTS_ACCUMULATED_BY_BACKWARD_PASS)) +
len(str(LAYER_ID_IN_NAME_OF_MODULE_PARAMS_FOR_PREDICTED_FRAMES_ERROR_GRADIENTS_ACCUMULATED_BY_BACKWARD_PASS)))]),
defaultdict(lambda :defaultdict(lambda :defaultdict(dict))))
dict_of_module_param_grad_by_layername_input_channnel_or_hiddenlayer_id_tuples[tuple(module_param_name_split_by_dot_list[:-(len(str(LAYER_ID_IN_NAME_OF_MODULE_PARAMS_FOR_PREDICTED_FRAMES_ERROR_GRADIENTS_ACCUMULATED_BY_BACKWARD_PASS)) +
len(str(LAYER_ID_IN_NAME_OF_MODULE_PARAMS_FOR_PREDICTED_FRAMES_ERROR_GRADIENTS_ACCUMULATED_BY_BACKWARD_PASS)))])][module_param_name_split_by_dot_list[-(
len(
str(
LAYER_ID_IN_NAME_OF_MODULE_PARAMS_FOR_PREDICTED_FRAMES_ERROR_GRADIENTS_ACCUMULATED_BY_BACKWARD_PASS)) +
len(
str(
LAYER_ID_IN_NAME_OF_MODULE_PARAMS_FOR_PREDICTED_FRAMES_ERROR_GRADIENTS_ACCUMULATED_BY_BACKWARD_PASS)))]][LAYER_INDEX_IN_NAME_OF_MODULE_PARAMS_FOR_WEIGHT_MATRICES_AND_BIAS_VECTORS_OF_HIDDEN_LAYERS_OR_OUTPUT_LAYERS_WHETHER_HIDDEN_LAYER_INDEX_IS_INCLUDED_OR_NOT_WHAT_TO_ACCUMULATE_GIVEN_LAYER_INDEX_WHAT_TO_ACCUMULATE_DURING_CALLING_FUNCTION_WHEN_WRITING_FUNCTIONS_THAT_ARE_CALLED_MULTIPLE_TIMES_DURING_BACKPROP][t_step_pred_forward_integrate_foward_pass_start:t_step_pred_forward_integrate_foward_pass_end+LAYER_INDEX_IN_NAME_OF_MODULE_PARAMS_FOR_WEIGHT_MATRICES_AND_BIAS_VECTORS_OF_HIDDEN_LAYERS_OR_OUTPUT_LAYERS_WHETHER_HIDDEN_LAYER_INDEX_IS_INCLUDED_OR_NOT_WHAT_TO_ACCUMULATE_GIVEN_LAYER_INDEX_WHAT_TO_ACCUMULATE_DURING_CALLING_FUNCTION_WHEN_WRITING_FUNCTIONS_THAT_ARE_CALLED_MULTIPLE_TIMES_DURING_BACKPROP+1]
=tuple(torch.reshape(module_param.grad,
module_param.grad.shape))
model.zero_grad();
if torch.cuda.is_available():
del loss_frame_prediction_ground_truth;
del loss_function;
torch.cuda.empty_cache();
torch.cuda.empty_cache();
torch.cuda.empty_cache();
torch.cuda.empty_cache();
torch.cuda.empty_cache();
return dict_of_module_param_grad_by_layername_input_channnel_or_hiddenlayer_id_tuples;
However when running this code snippet inside my training loop after having computed predictions across several timesteps forward pass-wise up until timestep ( t ), then subsequently iterating backwards over timesteps ( t rightarrow t-t_{int} rightarrow ... rightarrow t-t_{int}*text{int}(t/T_{int}) ), where ( T_{int} ) denotes total number of intervals over which BPTT takes place over ( N_{steps} times T_{sim} ).
I'm encountering an error related to gradients which doesn't make sense since gradients should only exist after `.backward()` has been called once per parameter tensor per iteration over timesteps going backward through time i.e., per BPTT iteration!
Here is what gets printed out right before crashing due to said error :
plaintext WARNING loss_frame_prediction_ground_truth_this...
...grad IS NOT None AND torch.all(loss...
...SHOULD NEVER HAPPEN Traceback (most recent call last)...RuntimeError...
...already has non-zero gradient Error Traceback...
...line ...in ... ...return _as_strided(...)
RuntimeError...size changed...expected size...
The full traceback points towards issues related specifically around gradient accumulation across different iterations over timesteps during BPTT which shouldn't happen according my understanding since gradients should reset at every timestep iteration back through time during BPTT via calling `.zero_grad()` prior computing `.backward()`. However something seems off here regarding gradient management across different layers/parameters/tensors being accumulated incorrectly somehow?
Any ideas why gradients aren't resetting properly between iterations even though `.zero_grad()` seems called prior each `.backward()` invocation? Would really appreciate insights here!
Thanks!