Skip to main content
Главная страница » Football » Litherland Remyca (England)

Litherland Remyca FC: Squad, Achievements & Stats in the Lancashire League

Litherland Remyca: A Comprehensive Analysis for Sports Betting

Overview / Introduction about the Team

Litherland Remyca, based in the heart of England, competes in the National League North. Known for their dynamic gameplay and strategic formations, the team is managed by a seasoned coach who has been instrumental in shaping their current success. Founded in 1895, Litherland Remyca has established itself as a formidable force in English football.

Team History and Achievements

Litherland Remyca boasts a rich history filled with notable achievements. The team has clinched several league titles and cup victories, marking them as one of the most successful clubs in their division. Their journey through various seasons has seen them consistently finish in top positions, showcasing their resilience and competitive spirit.

Current Squad and Key Players

The current squad features a blend of experienced veterans and promising young talents. Key players include:

  • John Smith (Forward): Known for his goal-scoring prowess, Smith leads the line with precision and agility.
  • David Brown (Midfielder): A tactical genius, Brown orchestrates play from the midfield with exceptional vision.
  • Michael Johnson (Defender): A rock at the back, Johnson’s defensive skills are crucial to the team’s stability.

Team Playing Style and Tactics

Litherland Remyca employs a versatile 4-3-3 formation, focusing on high pressing and quick transitions. Their strategy leverages both offensive flair and defensive solidity. Strengths include fast-paced attacking play and disciplined defense, while weaknesses may arise from occasional lapses in concentration during set pieces.

Interesting Facts and Unique Traits

The team is affectionately known as “The Rems,” with a passionate fanbase that supports them through thick and thin. They have historic rivalries with neighboring clubs, adding an extra layer of excitement to their matches. Traditions such as pre-match fan gatherings highlight the community spirit surrounding the club.

Lists & Rankings of Players, Stats, or Performance Metrics

  • ✅ John Smith – Top Scorer: 15 goals this season
  • ❌ Michael Johnson – Most Yellow Cards: 8 this season
  • 🎰 David Brown – Assists Leader: 10 assists this season
  • 💡 Team Goal Difference: +20 this season

Comparisons with Other Teams in the League or Division

Litherland Remyca stands out for their consistent performance compared to other teams in the National League North. Their ability to maintain form across different fixtures makes them a strong contender against rivals like [Other Team] and [Another Team]. Statistical comparisons reveal superior goal-scoring efficiency and defensive records.

Case Studies or Notable Matches

A breakthrough game was their victory against [Notable Opponent], where they showcased tactical brilliance by securing a win with a last-minute goal. This match highlighted their resilience and ability to perform under pressure.

Tables Summarizing Team Stats, Recent Form, Head-to-Head Records, or Odds

Statistic Litherland Remyca Average League Position
Total Goals Scored 45 N/A
Total Goals Conceded 25 N/A
Last Five Matches Form (W/D/L) W-W-D-L-W N/A
Odds for Next Match Win/Loss/Draw 1:
self.sr = nn.Conv3d(
dim,
dim,
kernel_size=(sr_ratio,sr_ratio,sr_ratio),
stride=(sr_ratio,sr_ratio,sr_ratio),
padding=(sr_ratio//2,sr_ratio//2,sr_ratio//2),
groups=dim)
self.norm = nn.LayerNorm(dim)

def forward(self, x):

B_, N_, C_ = x.shape

qkv_l_reshape__tmp__x_1616000809415765_shape__tmp__filled_1616000809415766_ = x.reshape(B_, N_, -1).transpose(1,
# time_steps_fused__t1467617451585067__,
# batch_fused__b1467617451585068__,
# channels_fused_c1467617451585069__
)
qkv_l_reshape__tmp__x_1616000809415765_shape__tmp__filled_1616000809415766___shape_orig_at_0_int32__fused___t1467617451585070_b1467617451585071_c1467617451585072_=qkv_l_reshape__tmp__x_1616000809415765_shape__tmp__filled_1616000809415766_.shape
qkv_l_linear_out_shaped_to_BN_C_times_num_heads_times_head_dim___t1467617451585073_b1467617451585074_c1467617451585075_=self.q(qkv_l_reshape__tmp__x_1616000809415765_shape__tmp__filled_1616000809415766_)
q_split_shape_pre_transpose___t1467617451585076_b1467617451585077_c1467617451585078_=qkv_l_linear_out_shaped_to_BN_C_times_num_heads_times_head_dim___t1467617451585073_b1467617451585074_c1467617451585075_.shape
q_split_pre_transpose_shaped_to_BN_times_num_heads_times_head_dim___t1467617451585080_b1467617451585081_c1467617451585082_=qkv_l_linear_out_shaped_to_BN_C_times_num_heads_times_head_dim___t1467617451585073_b1467617451585074_c1467617451585075_.reshape(*q_split_shape_pre_transpose___t1467617451585076_b1467617451585077_c1467617451585078_[0],self.num_heads,q_split_shape_pre_transpose___t1467617451585076_b1467617451585077_c1467617451585078_[1]//self.num_heads)
q_shaped_to_BNtimesnumheads_HD_C____t1467620892859379_b1473768921830579_c1473768921830580_=torch.transpose(q_split_pre_transpose_shaped_to_BN_times_num_heads_times_head_dim___t1467617451585080_b1467617451585081_c1473768921830580_,*[(1,),tuple(range(3))])
ksv_l_linear_out_shaped_to_BN_Ctimes_twice_the_head_dim____t1473768921830581_b1473768921830583_c1473768921830584_=self.kv(x.reshape(B_, N_, -1))
ksv_split_pre_transpose_shaped_to_BN_twice_the_num_heads_HD____t1473768921830585_b1473768921830587_c1473768921830588_=ksv_l_linear_out_shaped_to_BN_Ctimes_twice_the_head_dim____t1473768921830581_b1473768921830583_c1473768921830584_.reshape(*q_split_shape_pre_transpose___t1473768921830589_b1473768921830590_c1473768921830591_[0],self.num_heads*2,q_split_shape_pre_transpose___t1473768921830589_b1473768921830590_c1473768921830591_[1]//(self.num_heads*2))
ksv_post_transpose_shaped_to_BNtimesnumheads_twiceHD_C____t1473785878353959_b1473785878353961_c1473785878353964_=torch.transpose(ksv_split_pre_transpose_shaped_to_BN_twice_the_num_heads_HD____t1473768921830585_b1473785878353965_c1473785878353966_,*[(1,),tuple(range(3))])
kv_post_split_and_transposed_into_k_and_v____B_N_H_D____C_t1483824586264777_k1483824586264778_v1483824586264779_=ksv_post_transpose_shaped_to_BNtimesnumheads_twiceHD_C____t1483824586264776_b1483824586264778_v1483824586264780__.chunk(chunks=2,dim=-1)
k_____B_N_H_D____C_t1483840982965757__,v_____B_N_H_D____C_t1483840982965758_=kv_post_split_and_transposed_into_k_and_v____B_N_H_D____C_t1483824586264777_k1483824586264778_v1483824586264779_
dots_product_of_q_and_k_before_scaling_by_scaling_factor_____BNHHD_t1490196330524224_=torch.matmul(q_____B_N_H_D____C_t1490196330524223__,k_____B_N_H_D____C_t1490196330524225__.transpose(-1,-2))
dots_scaled_by_scaling_factor_____BNHHD_t1490209771798529_=dots_product_of_q_and_k_before_scaling_by_scaling_factor_____BNHHD_t1490196330524224_*self.scale
attn_weights_unnormalized=frozenset()

attn_weights_unnormalized.add((dots_scaled_by_scaling_factor_____BNHHD_t1490209771798529_.sum(-1),dots_scaled_by_scaling_factor_____BNHHD_t1490209771798529_.mean(-1),dots_scaled_by_scaling_factor_____BNHHD_t1490209771798529_.std(-1),dots_scaled_by_scaling_factor_____BNHHD_t1490209771798529_.min(-1),dots_scaled_by_scaling_factor_____BNHHD_t1490209771798529_.max(-1)))

attn_weights_unnormalized.add((dots_scaled_by_scaling_factor_____BNHHD_t1490209771798529__.sum(),dots_scaled_by_scaling_factor_____BNHHD_t1490209771798529__.mean(),dots_scaled_by_scaling_factor_____BNHHD_t1490209771798529__.std(),dots_scaled_by_scaling_factor_____BNHHD_t1490209771798529__.min(),dots_scaled_by_scaling_factor_____BNHHD_t1490209771798529__.max()))

softmax_attn_weights_over_last_two_dimensional_axis_normalized_attn_weights_over_seq_len_for_each_sample_in_batch_each_head_each_element_of_multihead________B_N_H_H____________T1544083986967007=self.attn_drop(nn.Softmax(dim=-‒‒‒‒‒‒‒‒‒‒‒‒)(dots_scaled_by_scaling_factor_____BNHHD_t1544083986967006__))
attn_output_unnormalized=frozenset()

_attn_output_unnormalized_addition_of_weighted_value_vectors_for_each_query_vector________B_N_H_D____________C1552660161848687=torch.matmul(softmax_attn_weights_over_last_two_dimensional_axis_normalized_attn_weights_over_seq_len_for_each_sample_in_batch_each_head_each_element_of_multihead________B_N_H_H____________T1552660161848686__,v#####B_N_H_D____________C1552660161848688__)
attn_output=frozenset()

_attn_output_addition_of_unnormalized_attention_outputs_for_all_queries________BND________________C1555272261174474=self.proj(_attn_output_unnormalized_addition_of_weighted_value_vectors_for_each_query_vector________B_N_H_D____________C1555272261174473__)
attn_output_projected=frozenset()

_attn_output_projected_dropout_applied_attention_outputs________BD________________C1557849273067947=self.proj_drop(_attn_output_addition_of_unnormalized_attention_outputs_for_all_queries________BND________________C1557849273067946__)
if self.sr_ratio > ‒‒:

if x.shape[-………] > ‒‍:
x_spatial_reduced_spatially_downsampled_input_features_via_convolution_reduce_spatial_resolution_while_preserving_temporal_resolution………………….XNTDC156211537799040=x.reshape(B_, N_*………,*………,*………).permute(0,….,….).
spatially_reduced_x_spatially_downsampled_input_features_via_convolution_reduce_spatial_resolution_while_preserving_temporal_resolution………………….XNTDC156211537799041=self.sr(x_spatial_reduced_spatially_downsampled_input_features_via_convolution_reduce_spatial_resolution_while_preserving_temporal_resolution………………….XNTDC156211537799040).permute(0,….,….).reshape(B_, N_*…..*…..*…..,….,).
spatially_reduced_x_normally_normalized_spatially_downsampled_input_features……………………XNDTC156211537799042=self.norm(spatially_reduced_x_spatially_downsampled_input_features_via_convolution_reduce_spatial_resolution_while_preserving_temporal_resolution………………….XNTDC156211537799041)
else:
spatially_reduced_x_normally_normalized_spatially_downsampled_input_features……………………XNDTC156211537799042=x.reshape(B_, N_*…..*…..*…..,….,).

query_after_projection_q_x_normally_normalized_spatially_downsampled_input_features……………………QNDTC156211537799043=self.q(spatially_reduced_x_normally_normalized_spatially_downsampled_input_features……………………XNDTC156211537799042).reshape(B_, N_*…..,….,).

key_after_projection_kv_x_normally_normalized_spatially_downsampled_input_features……………………KVDTC156211537799044=self.kv(spatially_reduced_x_normally_normalized_spatially_downsampled_input_features……………………XNDTC156211537799042).reshape(B_, N_*…..,….,).

query_key_dot_product_q_dot_kv_before_normalization_query_key_dot_product_q_dot_kv_before_normalization…………..QKDTCD156211537799045=torch.matmul(query_after_projection_q_x_normally_normalized_spatially_downsampled_input_features……………………QNDTC156211537799043,key_after_projection_kv_x_normally_normalized_spatially_downsampled_input_features……………………KVDTC156211537799044.transpose(-1,-2)).

attention_logits_query_key_dot_product_q_dot_kv_before_normalization_divided_by_square_root_of_key_dimensionality________________QKDTCDTLNSRD156211537799046=query_key_dot_product_q_dot_kv_before_normalization_query_key_dot_product_q_dot_kv_before_normalization…………..QKDTCD156211537799045/self.scale.

attention_logits_masking_inf_subtracted_from_diagonal_elements_of_attention_logits_matrix_so_that_diagonal_elements_are_not_attended_when_softmax_is_applied_on_attention_logits_matrix________________QKDTCDTLNSRDMSIIMAMSMASOASOAFAFATL157259882512526=query_key_dot_product_q_dot_kv_before_normalization_query_key_dot_product_q_dot_kv_before_normalization…………..QKDTCD156211537799045.tril(diagonal=-1).masked_fill(mask=(query_key_dot_product_q_dot_kv_before_normalization_query_key_dot_product_q_dot_kv_before_normalization…………..QKDTCD156211537799045==0),value=-inf).

attention_probabilities_softmax_applied_on_attention_logits_matrix_over_last_two_dimensional_axis________________QKTLDPSAAMSAOASOAFAFATL157259882512527=nn.Softmax(dim=-2)(attention_logits_masking_inf_subtracted_from_diagonal_elements_of_attention_logits_matrix_so_that_diagonal_elements_are_not_attended_when_softmax_is_applied_on_attention_logits_matrix________________QKDTCDTLNSRDMSIIMAMSMASOASOAFAFATL157259882512526).

value_weighted_summation_across_time_steps_using_softmax_probabilities_as_coefficients_for_value_vectors_across_time_steps____________VWSASTUSVPSCSFACVVCFTSL157259882512528=torch.matmul(attention_probabilities_softmax_applied_on_attention_logits_matrix_over_last_two_dimensional_axis________________QKTLDPSAAMSAOASOAFAFATL157259882512527,key_after_projection_kv_x_normally_normalized_spatially_downsampled_input_features……………………KVDTC156211537799044).

output_concatenation_with_original_sequence_representation_via_residual_connection_followed_with_layer_normalization________________VOCRSRLSNR157259882512529=_attn_output_projected_dropout_applied_attention_outputs________BD________________C1557849273067947+value_weighted_summation_across_time_steps_using_softmax_probabilities_as_coefficients_for_value_vectors_across_time_steps____________VWSASTUSVPSCSFACVVCFTSL157259882512528.

return output_concatenation_with_original_sequence_representation_via_residual_connection_followed_with_layer_normalization________________VOCRSRLSNR157259882512529,_attn_output_projected_dropout_applied_attention_outputs________BD________________C1557849273067947# pylint: disable=line-too-long,line-too-many-branches,line-too-many-statements,c0303,no-member,line-too-long,c0103,no-self-use,redefined-builtin,redefined-outer-name,wrong-import-position,wrong-import-order,wrong-import-type,reimported,f-string-without-interpolation,wrong-spaceship-comparison,inconsistent-return-statements,misplaced-comparison-constant,multiple-statements-in-line,no-else-return,no-self-use,redefined-builtin,redefined-outer-name,wrong-import-position,wrong-import-order,wrong-import-type,reimported,f-string-without-interpolation,wrong-spaceship-comparison,inconsistent-return-statements,misplaced-comparison-constant,multiple-statements-in-line,no-else-return,no-self-use,redefined-builtin,redefined-outer-name,wrong-import-position,wrong-import-order,wrong-import-type,reimported,f-string-without-interpolation,wrong-spaceship-comparison,inconsistent-return-statements,misplaced-comparison-constant,multiple-statements-in-line,no-else-return,no-self-use,redefined-builtin,redefined-outer-name,wrong-import-position,wrong-import-order,wrong-import-type,reimported,f-string-without-interpolation,wrong-spaceship-comparison,inconsistent-return-statements,misplaced-comparison-constant,multiple-statements-in-line,no-else-return,no-self-use,redefined-builtin,redefined-outer-name,wrong-import-position,wrong-import-order,wrong-import-type,reimported,f-string-without-interpolation,cyclic-import,i18n-no-wraptext,bad-super-call,duplicate-code-blocks,cyclic-import,i18n-no-wraptext,bad-super-call,duplicate-code-blocks,cyclic-import,i18n-no-wraptext,bad-super-call,duplicate-code-blocks,cyclic-import,i18n-no-wraptext,bad-super-call,duplicate-code-blocks,cyclic-import,i18n-no-wraptext,bad-super-call,duplicate-code-blocks,cyclic-import,i18n-no-wraptext,bad-super-call,duplicate-code-blocks,r0914,r0915,r0913,r0914,r0915,r0913,r0914,r0915,r0913,duplicate-code-blocks,bad-super-call,cyclic-import,i18n-no-wraptext#, r0904

class Block(nn.Module):

def __init__(self,
dim,
num_blocks,
mlp_ratios=[],
skip_lam=[],
drop=0.,
drop_path=0.,
init_values=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
depthwise=False):

mlp_ratios=multiples(num_blocks,*mlp_ratios)if len(mlp_ratios)==int()elsemlpratiostimesnumblocksiiflen(mlpratiostimesnumblocks)==int()elsemlpratiostimesnumblocks

skip_lam=multiples(num_blocks,*skip_lam)if len(skip_lam)==int()elseskiplamtimesnumblocksiiflen(skiplamtimesnumblocks)==int()elseskiplamtimesnumblocks

assert all([rat > int()for rat in mlp_ratios]), f’Each ratio must be positive.’

assert all([lam > int()and lam <= int()(i == num_blocks - int())for i,lam in enumerate(skip_lam)]), f'At least one lambda must be one when number of blocks is {num_blocks}.' self.cls_token=None if os.environ.get('CLIP_VIT_MODEL')=='RN50': logger.warning('Using CLIP ViT weights without cls token') elif os.environ.get('CLIP_VIT_MODEL')=='RN101': logger.warning('Using CLIP ViT weights without cls token') elif os.environ.get('CLIP_VIT_MODEL')=='RN50x16': logger.warning('Using CLIP ViT weights without cls token') elif os.environ.get('CLIP_VIT_MODEL')=='ViT-B/32': logger.warning('Using CLIP ViT weights without cls token') elif os.environ.get('CLIP_VIT_MODEL')=='ViT-B/16': logger.warning('Using CLIP ViT weights without cls token') else: pass if not(os.environ.get('CLIP_VIT_MODEL')=='RN50'oros.environ.get('CLIP_VIT_MODEL')=='RN101'oros.environ.get('CLIP_VIT_MODEL')=='RN50x16'oros.environ.get('CLIP_VIT_MODEL')=='ViT-B/32'oros.environ.get('CLIP_VIT_MODEL')=='ViT-B/16'): class_token=torch.nn.Parameter(torch.zeros(.....)) class_token.requires_grad_(True) assert len(init_values) == int(), 'Init values should be list of length same as number of blocks' def forward(self,x):# pylint: disable=line-too-many-statements,line-too-many-branches,line-too-long,c0303,no-member,line-too-long,c0103,no-self-use,redefined-builtin,redefined-outer-name,wrong-import-position,wrong-import-order,wrong-import-type,reimported,f-string-without-interpolation,wrong-spaceship-comparison,inconsistent-return-statements,misplaced-comparison-constant,multiple-statements-in-line,no-else-return,no-self-use,redefined-builtin,redefined-outer-name,wrong-spaceship-comparison,inconsistent-return-statements,misplaced-comparison-constant,multiple-statements-in-line,no-else-return,bad-super-call,duplicate-code-blocks,cyclic-import,i18n-no-wraptext#, r0904,r0914,r0915,r0913,r0904 return out,out_aux# pylint: disable=line-too-long,line-too-many-lines,# r0904# r0914# r0915# r0913# duplicate-code-blocks#cyclic_import#i18n_no_wraptext#,bad_super_call def multiples(n,numbers): return[n*num for num in numbers]*int(len(numbers)n)# pylint: disable=line-too-long#,duplicate-code-blocks#cyclic_import#i18n_no_wraptext#,bad_super_call

class PatchEmbed(nn.Module):

def __init__(self,n,pix_size,img_size,hparams):
super().__init__()
self.n=n

self.pix_size=pix_size

self.img_size=img_size

self.hparams=hparams

self.patch_embed=None

if hparams.patch_embed_type!=’Conv’:

patch_size=hparams.patch_size

patches_h=int(img_size/hpatchsize)

patches_w=int(img_size/wpatchsize)

num_patches=int(patches_hpatchesw)

if hparams.image_augmentation_type!=’none’:
patch_grid_h=int(imgsize/hpatchsize)+int(hparams.image_augmentation_patch_expansion+int())

patch_grid_w=int(imgsize/wpatchsize)+int(hparams.image_augmentation_patch_expansion+int())

num_patches=int(patch_grid_hpatchesw)-int(hparams.image_augmentation_patch_expansion+int())

if patch_grid_h-int(hparams.image_augmentation_patch_expansion+int())%patch_grid_w!=int():
num_patches=num_patches-patch_grid_h-int(hparams.image_augmentation_patch_expansion+int())%patch_grid_w

assert num_patches>=min_patches_per_side**min_pspside**min_pspside,’Augmented image patches are smaller than minimum patches per side’

assert patch_grid_h-int(hparams.image_augmentation_patch_expansion+int())%patch_grid_w==int(),’Augmented image patch grid height must be divisible by width’

hpatchesize=himgsize/hpatchgridh

wpatchesize=wimgsize/wpatchgridw

class convbnact(nn.Sequential):

def __init__(selfin):

super().__init__()

kernel_size=hparameters.conv_kernel_sizes[i]

stride=hparameters.conv_strides[i]

padding=kernelsizestride-int()

self.add_module(convstridpad,(nn.ConvTwod(kernel_size,stride,padding=bias=False)))

self.add_module(norm,(nn.BatchNormTwod(numfeatures=n)))

self.add_module(act,(getactivationfn(hparameters.act_types[i])))

class convbnactdepthwiseconvbnactdepthwise(nn.Sequential):

def __init__(selfin):

super().__init__()

kernel_sizes=hparameters.conv_kernel_sizes[i]

strides=hparameters.conv_strides[i]

paddings=[kernelsizestride-int()for kernelsizestrideinzip(kernel_sizes,strides)]

activations=getactivationfn(hparameters.act_types[i])

dropouts=hparameters.dropouts[i]

for kernel_size,stride,paddingactivationdropoutinzip(kernel_sizes,strides,paddingsactivationsdropouts):

if i%depth==depthdividedbytwoint():

self.add_module(convstridpad,(nn.ConvTwod(kernel_size,stride,padding=bias=Falsegroups=n)))

self.add_module(norm,(nn.BatchNormTwod(numfeatures=n)))

self.add_module(act,(activation()))

if dropout!=float():
self.add_module(drop,(nn.Dropout(dropout)))

else:

self.add_module(convstridpad,(nn.ConvTwod(kernel_size,stride,padding=bias=Falsegroups=n)))

if dropout!=float():
self.add_module(drop,(nn.Dropout(dropout)))

if i!=(depth*depthwise)-depthdividedbytwoint():

self.add_module(norm,(nn.BatchNormTwod(numfeatures=n)))

self.add_module(act,(activation()))

i+=depthdividedbytwoint()+depthdividedbytwoint()

for iinrange(depthdividedbytwoint()):

for iinrange(depthdividedbytwoint()):

for iinrange(depthdividedbytwoint()):

for iinrange(depthdividedbytwoint()):

else:

if hparameters.activation_type!=’gelu’:
raise NotImplementedError(f'{hparameters.activation_type} activation not supported.’)

elif hparameters.activation_type!=’relu’:
raise NotImplementedError(f'{hparameters.activation_type} activation not supported.’)

elif hparameters.activation_type!=’leakyrelu’:
raise NotImplementedError(f'{hparameters.activation_type} activation not supported.’)

elif hparameters.activation_type!=’prelu’:
raise NotImplementedError(f'{hparameters.activation_type} activation not supported.’)

elif hparameters.activation_type!=’silu’:
raise NotImplementedError(f'{hparameters.activation_type} activation not supported.’)

elif hparameters.activation_type!=’selu’:
raise NotImplementedError(f'{hparameters.activation_type} activation not supported.’)

elif hparameterstypeofactivation!=’none’:raiseNotImplementedErrorf{hparsetypeofactivation}activationsupported.

else:

if hparsetypeofactivation!=’gelu’:raiseNotImplementedErrorf{hparsetypeofactivation}activationsupported.

elif hparsetypeofactivation!=’relu’:raiseNotImplementedErrorf{hparsetypeofactivation}activationsupported.

elif hparsetypeofactivation!=’leakyrelu’:raiseNotImplementedErrorf{hparsetypeofactivation}activationsupported.

elif hparsetypeofactivation!=’prelu’:raiseNotImplementedErrorf{hparsetypeofactivation}activationsupported.

elif hparsetypeofactivation!=’silu’:raiseNotImplementedErrorf{hparsetypeofactivation}activationsupported.

elif hparsertypeoffunction!=’selu’:raiseNotImplementedErrorf{hparsertypeoffunction}activationsupported.

elif hparsertypeoffunction!=’none’:raiseNotImplementedErrorf{hparsertypeoffunction}activationsupported.

def forward(self,x):# pylint: disable=line-too-many-lines,# line-too-many-statements,line-too-long,c0303,no-member,line-too-long,c0103,no-self-use,redefined-builtin,redefined-outer-name#won’tfix#won’tfix#won’tfix#won’tfix#won’tfix#won’tfix#won’tfix#won’tfix#

returnembedded,x.shape[-2]

def build_model(config):# pylint: disable=line-too-many-lines,# line-too-many-lines,# line-too-many-lines,# line-too-many-lines,# line-too-many-lines,# line-too-many-lines,# line-too-many-lines,# line-too-many-lines,# duplicate-code-blocks#cyclic_import#i18n_no_wraptext#,bad_super_call#

config=config.copy()

config.setdefault(“norm”,None)# default norm layer is None

config.setdefault(“act”,None)# default act layer is None

model_dict={}

model_dict[‘model_name’]=’PatchFormer’# model name is PatchFormer

model