Overview / Introduction about the Team
Palermo Football Club, commonly known as Palermo, is an Italian football team based in Palermo, Sicily. Founded in 1900, the team competes in Serie B, Italy’s second division. Under the management of Giacomo Filippi, Palermo plays at the Stadio Renzo Barbera and is renowned for its passionate fanbase and rich history.
Team History and Achievements
Palermo has a storied history with notable achievements including winning Serie A in the 2004-2005 season. They have also secured victories in Coppa Italia and Supercoppa Italiana during their illustrious past. The club has experienced fluctuating league positions but remains a significant presence in Italian football.
Current Squad and Key Players
The current squad boasts key players like Andrea Accardi (midfielder), Alberto Almici (defender), and Filippo Lucca (striker). These players are crucial to Palermo’s tactical setup and performance on the field.
Team Playing Style and Tactics
Palermo typically employs a 4-3-3 formation, focusing on a balanced approach between defense and attack. Their strategy emphasizes quick transitions and exploiting wide areas. Strengths include their resilience and adaptability, while weaknesses often lie in defensive lapses.
Interesting Facts and Unique Traits
Fans affectionately call themselves “Rosanero” due to their distinctive red and black colors. Rivalries with teams like Catania are intense, reflecting deep regional ties. The club is known for its vibrant fan culture and traditions.
Lists & Rankings of Players, Stats, or Performance Metrics
- Top Performers:
- ✅ Andrea Accardi – Midfielder
- ✅ Alberto Almici – Defender
- ❌ Recent injuries affecting form: Giovanni La Rosa – Forward
- Key Metrics:
- 🎰 Average goals per match: 1.5
- 💡 Possession rate: 52%
Comparisons with Other Teams in the League or Division
Palermo’s tactical flexibility allows them to compete effectively against other Serie B teams like Benevento and Crotone. While they may not have the same financial resources as top-tier clubs, their strategic play often levels the field.
Case Studies or Notable Matches
A memorable match was Palermo’s victory over Juventus in Serie A during the 2004-2005 season, showcasing their potential to challenge stronger opponents with disciplined play.
| Team Stats Summary Table | ||||
|---|---|---|---|---|
| Metric | Last Season Average | This Season Average (so far) | ||
| Total Goals Scored | 45 | 22* | ||
| Total Goals Conceded | 49 | 30* | ||
| Average Possession (%) | 51% | 53% | ||
| Last Five Match Results (W/L/D) | N/A | D-W-L-W-D* | ||
| Head-to-Head Record Against Top Opponents* | ||||
| Opponent Team Name* | Total Matches Played* | Palermo Wins/Draws/Losses* | Average Goals Scored by Palermo* | Average Goals Conceded by Palermo* |
| Benevento* | 10* | 4/3/3* | 12* | 10* |
| Crotone* | 8*</tnagyistgeza/website/content/post/2020-01-29-hello-world.md — title: Hello World! author: István Nagy date: ‘2020-01-29’ slug: hello-world categories: – blogdown tags: – blogdown — Welcome to my blog! I am starting this blog to document my learning process of [R](https://www.r-project.org/) programming language. The main purpose of this blog is for me to learn [blogdown](https://bookdown.org/yihui/blogdown/) package. Here are some things that I would like to do: * Learn R programming language. My personal website. body { pre { code { blockquote { [context.production.environment] [context.branch-deploy] [context.deploy-preview] [[redirects]] [[redirects]] [[redirects]] [[headers]] [[headers]] [[headers]] # [[headers]] # [[headers]] # [[headers]] [security.headers] [[plugins]] [params] description = 'István Nagy' logo ="/img/logo.png" # path relative to static folder paginate = 10 # number of posts per page enableRobotsTXT =true enableGitInfo =false # set true if you use git info plugin useHugoToc = true enableMathJax =false # set true if you want mathjax support googleCustomSearchID = customCSS = socialShare = postListIcon ='fa-file-text-o' showRelatedPosts ='bottom' # where you want to show related posts ('none', 'bottom' or 'both') enableMissingTranslationWarning=false github_repo ='https://github.com/nagyistgeza/website' menu =[ { name='Home', url='/', weight=10 }, { name='Blog', url='/post/', weight=20 }, { name='About', url='/about-me/', weight=30 }, { name='Resume/CV', url='/resume-cv/', weight=40 } ] contentDir ='content' archetypeDir ='archetypes' pygmentsUseClasses =true options(blogdown.ext=.Rmd) rmarkdown::render_site() dir.create("_deploy", showWarnings=F) unlink("_deploy/static/css/hugo-theme-cleanwhite/", recursive=T) file.copy( unlink('_themes') if(file.exists('.nojekyll')) file.remove('.nojekyll') if(file.exists('.nojekyll')) file.remove('.nojekyll') file.copy(c('CNAME'), c('_deploy'), fix_file_names=F, recurse=F, copy.mode='copy') dir.create(".nojekyll", showWarnings=F) message("nnPushing files…") message("nnDone!") This Julia package implements Bayesian Gaussian Process Latent Variable Models as described in: Bachman et al., “Bayesian Nonparametric Latent Variable Models”, Proceedings of ICML (2017). This code is adapted from GPFlow https://github.com/GPflow/GPflow. GPFlow is released under the following license: Copyright (C) 2016 James Hensman Permission is hereby granted, free of charge, to any person obtaining a copy of this software The above copyright notice(s) shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND EXPRESS OR IMPLIED INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. ‘‘‘‘‘‘‘‘‘‘‘‘‘‘ ‘’’’’ This module provides a way of training Bayesian Gaussian Process Latent Variable Models using variational inference methods. For more details see https://gpflow.readthedocs.io/en/master/notebooks/BGPLVM-demo.html """ using ..BayesianGaussianProcessBase import Base.show export BayesianGPLVMModel,BGPLVM mutable struct BayesianGPLVMModel{T <: AbstractVector} =0 && gpuCompiler==nothing error(“””You must provide `gpuCompiler` when `gpuDevice>=0`. See `?GPFlow.compile_with_gpu`.”””) end gpuCompiler=gpuCompiler==nothing ? nothing : GPUCompiler.gpu_function_compiler(gpuDevice,gpuCompiler,gpuCompilerOptions…) callback=isnothing(callback) ? nothing : callback silent=max(silent,false) if silent && verbose error(“`silent` can’t be `true` if `verbose` is also `true`.”) end if verbose && !silent println(“nOptimizing model…n”) end optimizeType=isnothing(optimizerType) ? defaultOptimizer() : optimizerType optimizeOptions=isnothing(optimizationOptions) ? Dict() : optimizationOptions return gpuDevice,gpuCompiler,callback,silent,optimizeType,optimizeOptions end function optimize_in_place(model,maxIter,tolerance,maxfun,callback,gpuDevice,gpuCompiler,silent,optimizeType,optimizeOptions…) f=model.update_gradients!(model.parameters()) opttype=getOptimizer(optimizeType,f,size(model.parameters())) opttype.optimize!(model.parameters(),opttype.max_iter||maxIter,opttype.tolerance||tolerance,opttype.max_fun||maxfun,model.callback==callback?callback:(model.callback===nothing?_inplaceCallback:(model.callback=>_inplaceCallback)),gpuDevice=gpuDevice,gpuCompiler=gpuCompiler,silent=silent,opttype.opt_options…) model.update_latent_vars!(model.parameters()) model.update_model_statistics!(model.parameters()) return true end function _inplaceCallback(params,model,i,obj) model.update_latent_vars!(params) model.update_model_statistics!(params) obj=params.log_likelihood() println(i,” “,obj,”r”) return obj,i,false,false end function optimize_off_line(model,maxIter,tolerance,maxfun,callback,gpuDevice,gpuCompiler,silent,optimizeType,optimizeOptions…) f=model.objective() opttype=getOptimizer(optimizeType,f,size(model.parameters())) opttype.optimize!(opttype.max_iter||maxIter,opttype.tolerance||tolerance,opttype.max_fun||maxfun,model.callback==callback?callback:(model.callback===nothing?_offlineCallback:(model.callback=>_offlineCallback)),gpuDevice=gpuDevice,gpuCompiler=gpuCompiler,silent=silent,opttype.opt_options…) model.set_parameters(opttype.minimizer()) model.update_latent_vars!(model.parameters()) model.update_model_statistics!(model.parameters()) return true end function _offlineCallback(params,model,i,obj) obj=params.log_likelihood() println(i,” “,obj,”r”) return obj,i,false,false end function getOptimizer(optimizerType,f,numParams…) isnothing(optimizerType) ? defaultOptimizer(f,numParams…) : optimizerType function defaultOptimizer(f,numParams…) if numParams[end]>100000 defaultOptimizer=BFGS() warn(“””Your model has more than $numParams parameters. BFGS will likely be too slow for such large models. SGD might be faster.”””) else defaultOptimizer=BFGS() if f.has_analytic_hessian defaultOptimizer=L-BFGS() warn(“””Your model supports analytic Hessian computation. L-BFGS will likely converge faster than BFGS.”””) else defaultOptimizer=BFGS() end end return defaultOptimizer(f,numParams…) end mutable struct BGPLVM{T <: AbstractVector} <: AbstractVariationalGP{T} X::T Y::AbstractMatrix Q::Int alphaPriorMean::Float64 alphaPriorVariance::Float64 betaPriorMean::Float64 betaPriorVariance::Float64 priorMeanVecLogPrecisionAlphaBetaVecLogPrecisionGammaVecLogPrecisionGammaBetaVecLogPrecisionAlphaBetaGammaVecLogPrecisionAlphaBetaGammaSigmaVecLogPrecisionOmegaVecLogPrecisionPhiVecLogPrecisionOmegaPhiVecLogPrecisionSigmaPhiVecLogPrecisionOmegaPhiSigmaPhiVecLogPrecisionAlphaBetaGammaSigmaOmegaPhiSigmaPhiVecLogPrecisionsVectorizedArrayOfScalarVectors priorMeanAlphaBetaGammaSigmaOmegaPhiSigmaPhiVecVectorizedArrayOfScalarVectors priorVariancesAlphaBetaGammaSigmaOmegaPhiSigmaPhiVecVectorizedArrayOfScalarVectors kernelLengthScalePriorMeanAlphaBetaGammaSigmaOmegaPhiSigmaPhiVevctorizedArrayOfScalarVectors kernelLengthScalePriorVarianceAlphaBetaGammaSigmaOmegaPhisigmaPhivecvectorizedArrayOfScalarVectors kernelVariancesPriorMeanAlphaBetaGammaSigmaOmegaPhisigmaPhivecvectorizedArrayOfScalarVectors kernelVariancesPriorVarianceAlphaBetaGammaSigmasigmaPhivecvectorizedArrayOfScalarVectors logMarginalLikelihood :: Float64 logMarginalPosterior :: Float64 numActiveDims :: Int meanFunctionParameters :: Vector{Any} parameters :: Vector{Any} function BGPLVM(;alphaPriorMean,alphaPriorVariance,betaPriorMean,betaPriorVariance,kernelLengthScale,kernelVariances,X,Y,Q,numActiveDims,priorMeans,priorVariances,kernelLengthScalePriors,kernelVariancesPriors) n=size(Y)[begin] d=size(Y)[end] p=numActiveDims!=nothing ? numActiveDims : d alpha_prior_mean_vector=zeros(Float64,(length(kernelLengthScale)+length(kernelVariances)+length(priorMeans)+length(kernelLengthScalePriors)+length(kernelVariancesPriors))) alpha_prior_variance_vector=zeros(Float64,(length(kernelLengthScale)+length(kernelVariances)+length(priorMeans)+length(kernelLengthScalePriors)+length(kernelVariancesPriors))) beta_prior_mean_vector=zeros(Float64,(length(kernelLengthScale)+length(kernelVariances)+length(priorMeans)+length(kernelLengthScalePriors)+length(kernelVariancesPriors))) beta_prior_variance_vector=zeros(Float64,(length(kernelLengthScale)+length(kernelVariances)+len(length(priorMeans))+len(length(kernellengthscale_priors))+len(length(kernellvariance_priors)))) for i ∈ eachindex(alpha_prior_mean_vector,alpha_prior_variance_vector,beta_prior_mean_vector,beta_prior_variance_vector,alpha_prior_mean_vector[i]=alpha_prior_mean beta_prior_variance_beta prior_variance_alpha prior_variance_beta alpha_prior_mean_kernel_length_scale[i]=kernel_length_scale_priors[i] beta prior_variance_kernel_length_scale[i]=kernel_length_scale_priors[i] alpha prior_mean_kernel_variace[i]=kernel_variace_prios[i] beta prior_variance_kernel_variace[i]=kernel_variace_prios[i] alpha prior mean_prior_means[i]=prior_means[i] beta prior variance priors variancess[i]=prior variancess[i] end prior_means_alpha_beta_gamma_sigma_omega_phi_sigma_phi_vec_vectorized_array_of_scalar_vectors=hcat(alpha_prior_mean_vector,beta_prior_mean_vector,alpha_prior_mean_kernel_length_scale_vec,beta_prior_mean_kernel_length_scale_vec,alpha_priormean_kernal_variace_vec,beta_priormean_kernal_variace_vec,prior_means_alpha_beta_gamma_sigma_omega_phi_sigma_phi_vec) priors_variances_alpha_beta_gamma_sigma_omega_phi_sigma_phi_vec_vectored_array_of_scalar_vectors=hcat(alpha_priovariencevariance_beta_priovariencevariance_alpha_priovariencevariance_kernal_length_scalebeta_priovariencevariance_kernal_length_scalealpha_priovariencevarience_kernal_variacebeta_priovariencevarience_kernal_variacepriors_variances_alpha_beta_gamma_sigma_omega_phi_sigma_phi_vec_vectored_array_of_scalar_vectors) kernellengthscale_priors_alpha_beta_gamma_sigma_omega_phisigma_phivectorisedarrayofscalarvecs=hcat(hcat(hcat(hcat(zeros(Float64,length(kernellengthscale)),zeros(Float64,length(kernellengthscale))),kernellengthscale_prios),zeros(Float64,length(kernellengthscale))),zeros(Float64,length(kernellengthscale)),zeros(Float64,length(kernellengthscale)),zeros(Float64,length(kernellengthscale))) kernelvariaces_prios_alpha_beta_gamma_sigma_omega_phisigma_phivectorisedarrayofscalarvecs=hcat(hcat(hcat(zeros(Float64,length(kernalvariaces)),zeros(Float64,length(kernalvariaces))),kernalvariaces_prios),zeros(Float64,length(kernalvariaces)),zeros(Float64,length(kernalvariaces)),zeros(Float64,length(kernalvariaces))) priormean_log_precision_alphabetagammasigmawhiphisigmaphivectorisedarrayofscalarvecs=log.(priormeansalphabetagammasigmawhiphisigmaphivectorisedarrayofscalarvecs.+eps())' priormean_log_precision_alphabetagammasigmawhiphisigmaphivectorisedarrayofscalarvecs=log.(priormean_log_precision_alphabetagammasigmawhiphisigmaphivectorisedarrayofscalarvecs.+eps())' priovariences_log_precision_alphabetagammasigmawhiphisigmaphivectorisedarrayofscalarvecs=log.(priovariancesalphabetagammasigmawhiphisigmaphivectorisedarrayofscalarvecs.+eps())' priovariences_log_precision_alphabetagammasigmawhiphisigmaphivectorisedarrayofscalarvecs=log.(priovariences_log_precision_alphabetagammasigmawhiphisigmaphivectorisedarrayofscalarvecs.+eps())' parameters=hcat(zeros(n,p),priormeansalphabetagammasigmawhiphisigmapriovarianceslogprecisionalphabetagammassigmaphi_simgapriomatrix,hcat(zeros(d-d*p),kernelscalematrix),kernelmatrix) parameters=[parameters;priormean_log_precision_alphabetagamma_sigmasigmathephi_simgapriomatrix;priovariences_log_precision_alphabetagamma_sigmasigmathephi_simgapriomatrix;kernellengthscalerandomvariables;kernalvariacescorrespondingrandomvariables] log_marginal_likelihood=-Inf log_marginal_posterior=-Inf mean_function_parameters=[] new(X,Y,Q,alphaPriomean,alphaPriovariance,betapriomean,betapriotrivance,kernelleangthescale,kernelvariancess,prioritymeans,priorityvaiances,kernelleangthescaleprirs,kernelvariancessprirs, log_marginal_likelihood, log_marginal_posterior, numActiveDims, meanFunctionParameters, parameters, prioritymeansalphabetagamma_sigmasigmathephi_simgaprio_matrix, priorityvaianceslogprecisionsalphabetagamma_sigmasigmathephi_simgaprio_matrix, kernelscalematrix, kernelmatrix, kernalscaleresponsingrandomvariables, kernalscaleresponsingrandomvariables, ) end function update_model_statistics!(self,params) self.Kzz=params[end-length(self.priors_variances_log_precisions_alpha_beta_gamma_sigmasigmaphi_simgaprivo_matrix):self.prior_means_lengthscales.length][self.prior_means_lengthscales.length:end-self.kernel_matrices.length] self.Kzz_chols=self.Kzz.cholfact() self.Lz=self.Kzz_chols.U[]^(-T)' self.Q_mu=self.Lz*self.X' self.Q_mu_y=self.Q_mu*self.Y' self.Lz_Lz_transpose_inv_Q_mu_y=self.Lz'(self.Lz'self.Q_mu_y) self.inv_Kzz_Q_mu_y=self.Kzz_chols.U[]self.Lz_Lz_transpose_inv_Q_mu_y[] self.mu_y=self.Y-self.inv_Kzz_Q_mu_y+self.Q_mu_y update_model_statistics(self,params,end-length(self.prior_vaiances_log_precisions_alpha_beta_gama_sigmasigmaphi_simgaprivo_matrix):self.prio_means_lengthscales.length,self.prio_means_lengthscales.length:end-self.kernel_matrices.length,self.X,self.Y,self.Kzz_chols,self.Lz,self.Q_mu,self.Q_mu_y,self.Lz_Lz_transpose_inv_Q_mu_y,self.inv_Kzz_Q_mu_y,self.mu_y) end function update_gradients_(self,params)::Nothing update_gradients(self,params,end-length(self.prio_vaiances_log_precisions_alpbetagaama_sigmasigmaphi_simgaprivo_matrix):self.prio_means_lengthscales.length,end-length(self.kernel_matrices):self.prio_means_lengthscales.length,self.prio_vaiances_log_precisions_alpbetagaama_sigmasigmaphi_simgaprivo_matrix,:,:,self.X,self.Y,self.Kzz_chols,:,:,self.Lz,:,:,self.Q_mu,:,:,self.Q_mu_y,:,:,self.Lz_Lz_transpose_inv_Q_mu_y,:,:,self.inv_Kzz_Q_mu_y,:,:,self.mu_y,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:,:) update_gradients_(params[end-length(self.kernel_matrices):end],:,params[self.num_active_dims]:params[self.num_active_dims+self.d-self.num_active_dims],:,params[self.num_active_dims+self.d-self.num_active_dims]:params[self.num_active_dims+self.d],:,params[self.num_active_dims+self.d]:params[self.num_active_dims+self.d+self.q],:,params[self.num_active_dims+self.d+self.q]:params[end]) update_gradients_(params[:],:,params[:],:,[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]) update_gradients_(…,update_gradients_,update_gradients_,update_gradients_,update_gradients_,update_gradients_,update_gradients_,update_gradiaents_,update_gradiaents_,update_gradiaents_,update_gradiaents_,update_gradiaents_,update_gradiaents_,update_gradiaents_,update_gradiaents_,update_gradiaents_,updatgraduaents_) updategradiaents_(…,updatgraduaents_,updatgraduaents_,updatgraduaents_) updatgraduaensts(updatgraduaensts,…) updatgraants(upatgraants,…) upatgraants(…) upatgraants(…) upatgraants(…) upatgraants(…) upatgraants(…) upatgraants(…) upatgrains(upatgrains,…) upatgrains(…) upatgrains(…) upatgrains(…) upatgrains(…) upatgrains(…) upatgrains(…) upatgrains(…) upataigns(upataigns,…) upataigns(upataigns,…) upataigns(upataigns,…) upataigns(upataigns,…) upataigns(upataigns,…) upataigns(upataigns,…) return nothing end function objective(self)::Float32 objective_=objective(end-length(self.prio_vaiances_log_precisions_alpbetagaama_sigmasigmaphi_simgaprivo_matrix): self.prio_means_lengthscales.length,end-length(self.kernel_matrices): self.prio_means_lengthscales.length, self.kernelscale_random_variables, self.kernelscale_corresponidng_random_variables, self.mu_Y, self.inv_K_z_z_q_u_Y, length(end), length(end), length(end), length(end), length(end), length(end), length(end), length(end), length(end), length(end), length(end), length(end), lenngth(lenngth(lenngth(lenngth(lenngth(lenngth(lenngth(lenngth(lenngth(lenngth(lenngth(lenngth(lenngth)))))))))))) | |||